Collaborative Research: Plasma Physics At Small Coulomb Logarithms

合作研究:小库仑对数下的等离子体物理

基本信息

  • 批准号:
    1714144
  • 负责人:
  • 金额:
    $ 1.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-07 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

This collaborative research project will advance fundamental understanding of how groups of high speed ions crash into and interact with each other. One can measure just how violent a collision is by comparing the energy of the crashing high-speed ions with the electrical force between them. The most violent ion collisions, the ones that are most important both for extending our scientific knowledge and for developing technological applications, are very difficult to measure or calculate. They occur in extremely hot and very dense gases of charged particles called plasmas. In this project, new ideas will be used to measure and understand these collisions. Lasers will be used to slow atoms from speeds of nearly 1000 meters per second to a crawl of about an inch per second; and then to turn these slow atoms into ions. Additional lasers will then be used to measure how these ions crash into each other. The ions in these slow-motion collisions have the same amount of crash energy compared to the ion-ion electrical force, which means that the collision results can be directly compared to similar collisions at any energy. This project will use state-of-the-art large-scale computer simulations to make movies of the ion-ion collisions and compare these to the experimental measurements. When the computations are proven to be sufficiently accurate, approximations will be gradually introduced and tested in order to speed up the computations. These results will then set the standard for accurate and fast computations of ion collisions in plasmas. Several students will work on this project: Undergraduate and graduate students and post-doctoral scientists will work closely with expert scientists at Willamette University (Oregon), Brigham Young University (Utah), and the New Mexico Consortium (New Mexico).The proposed collaborative research project will investigate energy relaxation in a system in which the value of the Coulomb logarithm is small. This is typical of high-energy-density systems, where violent small-impact-parameter collisions result in large particle deflections. Understanding these collisions is a priority for advancing fundamental plasma physics and for accurately modeling small impact parameter collisions in high energy density plasmas. The proposed work will generate high quality data in plasma regimes where traditional diagnostics are limited. The proposed work will combine data from a new dual-species ultracold neutral plasma experiment and state-of-the-art simulations to study temperature equilibration in moderately coupled plasmas, in which classic plasma assumptions are invalid. The dual-species plasma will be generated by resonantly photo-ionizing laser-cooled Yb and Ca atoms in the same magneto-optical trap. Laser-induced fluorescence measurements will be used to measure the time-evolving ion velocity distribution for each ion species simultaneously. By delaying the ionization of one species relative to the other, the time scale for full energy relaxation can be determined. State-of-the-art molecular dynamics simulations will be performed that match the density, stoichiometry, and geometry of the experiments. The calculations will provide a first-principles description of collision processes by directly integrating many-body trajectories. Arbitrarily complicated orbits will be computed self-consistently with dynamical many-body screening. The many-body phase dynamics will be inverted to yield highly accurate effective Coulomb logarithms, providing important information back to the high energy density community. This project will support one graduate student per year for three years at BYU, two undergraduate students per year at BYU, two undergraduate students per year at WU, and one post-doc per year for two years at NMC.
该合作研究项目将增进对高速离子群如何碰撞和相互作用的基本理解。通过将碰撞的高速离子的能量与它们之间的电力进行比较,可以测量碰撞的剧烈程度。最猛烈的离子碰撞对于扩展我们的科学知识和开发技术应用来说都是最重要的,但却很难测量或计算。它们出现在极热且非常稠密的带电粒子气体(称为等离子体)中。在这个项目中,将使用新的想法来测量和理解这些碰撞。激光将用于将原子速度从每秒近 1000 米减慢至每秒约一英寸;然后将这些缓慢的原子变成离子。然后将使用额外的激光器来测量这些离子如何相互碰撞。与离子-离子电力相比,这些慢速碰撞中的离子具有相同的碰撞能量,这意味着碰撞结果可以直接与任何能量下的类似碰撞进行比较。该项目将使用最先进的大规模计算机模拟来制作离子对离子碰撞的电影,并将其与实验测量结果进行比较。当计算被证明足够准确时,将逐渐引入和测试近似值,以加快计算速度。这些结果将为准确、快速计算等离子体中的离子碰撞设定标准。几名学生将参与该项目:本科生、研究生和博士后科学家将与威拉米特大学(俄勒冈州)、杨百翰大学(犹他州)和新墨西哥联盟(新墨西哥州)的专家科学家密切合作。研究项目将研究库仑对数值较小的系统中的能量弛豫。这是高能量密度系统的典型特征,其中剧烈的小冲击参数碰撞会导致大的粒子偏转。了解这些碰撞是推进基础等离子体物理学和准确模拟高能量密度等离子体中的小冲击参数碰撞的首要任务。拟议的工作将在传统诊断受到限制的血浆状态下生成高质量数据。拟议的工作将结合新的双物种超冷中性等离子体实验和最先进的模拟的数据来研究中等耦合等离子体中的温度平衡,其中经典等离子体假设是无效的。双物质等离子体将由同一磁光陷阱中的激光冷却 Yb 和 Ca 原子共振光电离产生。激光诱导荧光测量将用于同时测量每个离子种类随时间演化的离子速度分布。通过延迟一种物质相对于另一种物质的电离,可以确定完全能量弛豫的时间尺度。将进行最先进的分子动力学模拟,以匹配实验的密度、化学计量和几何形状。这些计算将通过直接整合多体轨迹来提供碰撞过程的第一性原理描述。任意复杂的轨道将通过动态多体筛选自洽地计算。多体相动力学将被反转以产生高精度的有效库仑对数,为高能量密度社区提供重要信息。该项目将在杨百翰大学每年资助一名研究生,为期三年,在杨百翰大学每年资助两名本科生,在西弗吉尼亚大学每年资助两名本科生,在 NMC 每年资助一名博士后,为期两年。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Murillo其他文献

Michael Murillo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Murillo', 18)}}的其他基金

Atomistic Macroscopic Simulations of Collisional Plasmas
碰撞等离子体的原子宏观模拟
  • 批准号:
    2108505
  • 财政年份:
    2021
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Plasma Physics At Small Coulomb Logarithms
合作研究:小库仑对数下的等离子体物理
  • 批准号:
    1500363
  • 财政年份:
    2015
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Student Funding to Attend the International Conference on Strongly Coupled Coulomb Systems (SCCS); Santa Fe, NM; July 27 - August 1, 2014
资助学生参加强耦合库仑系统国际会议(SCCS);
  • 批准号:
    1432963
  • 财政年份:
    2014
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于鞘层Monte Carlo粒子仿真模型的非稳态真空弧等离子体羽流的内外流一体化数值模拟研究
  • 批准号:
    12372297
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
含能等离子体流在固体电推力器中的演化机理研究
  • 批准号:
    52302485
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复杂激光等离子体环境下束间能量转移的理论模拟研究
  • 批准号:
    12375239
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
紧凑环等离子体与磁化等离子体融合过程实验研究
  • 批准号:
    12375226
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
等离子体多维界面耦合强化锂金属负极及其电化学性能机制研究
  • 批准号:
    52372235
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Cardiometabolic Consequences And Pathway Of Weight Gain Associated With Dolutegravir-Based Antiretroviral Therapy In Haiti. A Collaborative Study Between GHESKIO And CCASAnet
海地基于多替拉韦的抗逆转录病毒治疗相关的心脏代谢后果和体重增加途径。
  • 批准号:
    10750906
  • 财政年份:
    2023
  • 资助金额:
    $ 1.5万
  • 项目类别:
Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318494
  • 财政年份:
    2023
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Environmental Agents as Modulators of Disease Processes
环境因素作为疾病过程的调节剂
  • 批准号:
    10852393
  • 财政年份:
    2023
  • 资助金额:
    $ 1.5万
  • 项目类别:
Effects of Genetic ANGPTL3 Deficiency on Hepatic Lipid Regulation and Lipoprotein Production
遗传性 ANGPTL3 缺陷对肝脏脂质调节和脂蛋白产生的影响
  • 批准号:
    10605624
  • 财政年份:
    2023
  • 资助金额:
    $ 1.5万
  • 项目类别:
2023 International Society for Vaccines (ISV) Annual Congress, October 22-25, Lausanne, Switzerland
2023 年国际疫苗协会 (ISV) 年会,10 月 22 日至 25 日,瑞士洛桑
  • 批准号:
    10754840
  • 财政年份:
    2023
  • 资助金额:
    $ 1.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了