DMREF: Collaborative Research: Predictive Modeling of Polymer-Derived Ceramics: Discovering Methods for the Design and Fabrication of Complex Disordered Solids
DMREF:协作研究:聚合物衍生陶瓷的预测建模:探索复杂无序固体的设计和制造方法
基本信息
- 批准号:1729086
- 负责人:
- 金额:$ 29.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Description: In the broader context of the materials-by-design grand challenge, this project will focus on developing a novel methodology for accurate design and fabrication of complex disordered solids using a combination of advanced computational and experimental techniques. Complex disordered solids are non-crystalline materials for which the fundamental building blocks are typically molecules or molecule fragments, and therefore they have great potential for tunable structure and properties for various applications of great scientific and technological importance. The key feature of our novel approach is to develop an efficient iterative loop that involves simulating the atomic structure of complex disordered solids, subsequently characterizing the resultant structures/properties, and sending the information back to fabrication conditions for further optimization. This new development is significant because it will demonstrate a computation-based design principle for systematically obtaining the growth parameters needed to make complex disordered materials with targeted properties. Ultimately, that ability can be directed to produce materials that are optimized for particular applications. It is envisioned that the results of this project will be transferrable to a wide range of complex disordered material types, growth methods, and structural/functional properties. The complete system is designated as the amorphous materials designer (AMD) program. During the construction of the AMD, students from high school up though Ph.D. graduate school will be trained by the investigators in all aspects of the research including materials simulation, fabrication, and characterization using advanced state-of-the-art methods.Technical Description: The research will focus on developing an ab initio molecular dynamics (AIMD) and hybrid reverse Monte Carlo (HRMC) simulation algorithm, augmented by ab initio based energy constraints, that couples with experimental input and feedback, using a series of thin-film amorphous preceramic polymers (a-BC:H, a-SiBCN:H, and a-SiCO:H) as suitably complex and technologically relevant case studies. The unique utility of modern solid-state nuclear magnetic resonance techniques to obtain specific bonding and connectivity information and the sensitive medium-range order information available from fluctuation electron microscopy - a specialized technique based on transmission electron microscopy - will be combined with neutron diffraction and more routine physical and electronic structure characterization methods to provide input and constraints for the simulations. The HRMC modeling efforts will be optimized via particle swarm optimization and subsequently used to train an artificial neural network (ANN) that will predictively link the parameters used to simulate a desired material with the growth parameters needed to fabricate said material. Consequently, the investigators expect to substantially advance the state of the art and surmount traditional challenges associated with (1) identifying non-global potential energy minima for materials produced under non-thermodynamic conditions and (2) aligning simulation and growth process timescales. This effort will benefit technology and society by advancing the science of design of complex disordered solids. The novelty of the effort lies in developing the algorithms and rule-sets that will tie together growth, characterization, and simulation, as well as in developing strategies for mapping (not necessarily reproducing) fabrication conditions and desired properties, and it is this that takes the effort from evolutionary to potentially revolutionary. The PIs also plan to release the AMD program as open source and build a user community around it by ensuring that interested researchers are able to contribute to the AMD codebase. This will allow a wider growth of the project. This aspect is of special interest to the software cluster in the Office of Advanced Cyberinfrastructure, which has provided co-funding for this award.
非技术描述:在材料设计大挑战的更广泛背景下,该项目将重点开发一种新颖的方法,结合先进的计算和实验技术来精确设计和制造复杂的无序固体。复杂的无序固体是非晶体材料,其基本构件通常是分子或分子片段,因此它们在具有重大科学和技术重要性的各种应用中具有可调节结构和性能的巨大潜力。我们的新方法的关键特征是开发一个有效的迭代循环,其中涉及模拟复杂无序固体的原子结构,随后表征所得结构/属性,并将信息发送回制造条件以进行进一步优化。这一新进展意义重大,因为它将展示基于计算的设计原理,用于系统地获得制造具有目标特性的复杂无序材料所需的生长参数。最终,这种能力可以用于生产针对特定应用进行优化的材料。预计该项目的结果将可应用于各种复杂的无序材料类型、生长方法和结构/功能特性。完整的系统被指定为非晶材料设计师(AMD)计划。在AMD的建设过程中,学生从高中一直到博士。研究生院将接受研究人员在研究各个方面的培训,包括使用先进的最先进方法的材料模拟、制造和表征。技术描述:该研究将重点开发从头算分子动力学(AIMD)以及混合反向蒙特卡罗 (HRMC) 模拟算法,通过从头开始的能量约束进行增强,该算法与实验输入和反馈相结合,使用一系列薄膜非晶态陶瓷前体聚合物 (a-BC:H、 a-SiBCN:H 和 a-SiCO:H)作为适当复杂且技术相关的案例研究。现代固态核磁共振技术的独特用途是获得特定的键合和连接信息以及波动电子显微镜(一种基于透射电子显微镜的专门技术)提供的敏感中程有序信息,该技术将与中子衍射等相结合常规物理和电子结构表征方法,为模拟提供输入和约束。 HRMC 建模工作将通过粒子群优化进行优化,随后用于训练人工神经网络 (ANN),该网络将预测性地将用于模拟所需材料的参数与制造所述材料所需的生长参数联系起来。因此,研究人员期望大幅提升现有技术水平并克服与以下相关的传统挑战:(1)确定非热力学条件下生产的材料的非全局势能最小值;(2)调整模拟和生长过程时间尺度。这项努力将通过推进复杂无序固体的设计科学来造福技术和社会。这项工作的新颖之处在于开发将生长、表征和模拟结合在一起的算法和规则集,以及开发映射(不一定复制)制造条件和所需属性的策略,而这正是需要的。从进化到潜在革命的努力。 PI 还计划以开源方式发布 AMD 程序,并围绕该程序建立一个用户社区,确保感兴趣的研究人员能够为 AMD 代码库做出贡献。这将使该项目获得更广泛的发展。高级网络基础设施办公室的软件集群对这一方面特别感兴趣,该办公室为该奖项提供了共同资助。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoscale Structure-Property Relationship in Amorphous Hydrogenated Boron Carbide for Low- k Dielectric Applications
用于低 k 介电应用的非晶态氢化碳化硼的纳米级结构-性能关系
- DOI:10.1017/s1431927617008091
- 发表时间:2017
- 期刊:
- 影响因子:2.8
- 作者:Im, Soohyun;Paquette, Michelle M.;Belhadj-Larbi, Mohammed;Rulis, Paul;Sakidja, Ridwan;Hwang, Jinwoo
- 通讯作者:Hwang, Jinwoo
Direct Determination of Medium Range Ordering in Amorphous Hydrogenated Boron Carbide for Low-k Dielectric Applications
直接测定低 k 电介质应用中非晶态氢化碳化硼的中程有序度
- DOI:10.1017/s143192762001394x
- 发表时间:2020
- 期刊:
- 影响因子:2.8
- 作者:Gharacheh, Mehrdad Abbasi;Im, Soohyun;Johnson, Jared;Ortiz, Gabriel Calderon;Zhu, Menglin;Oyler, Nathan;Paquette, Michelle;Rulis, Paul;Sakidja, Ridwan;Hwang, Jinwoo
- 通讯作者:Hwang, Jinwoo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinwoo Hwang其他文献
FEMSIM + HRMC: Simulation of and structural refinement using fluctuation electron microscopy for amorphous materials
FEMSIM HRMC:使用波动电子显微镜对非晶材料进行模拟和结构细化
- DOI:
10.1016/j.cpc.2016.12.006 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
J. Maldonis;Jinwoo Hwang;P. Voyles - 通讯作者:
P. Voyles
Identifying Atomic Reconstruction at Complex Oxide Interfaces Using Quantitative STEM
使用定量 STEM 识别复杂氧化物界面处的原子重构
- DOI:
10.1017/s1431927615006972 - 发表时间:
2015 - 期刊:
- 影响因子:2.8
- 作者:
Jared M. Johnson;Justin K. Thompson;S. S. Seo;Jinwoo Hwang - 通讯作者:
Jinwoo Hwang
Atomic scale investigation of chemical heterogeneity in β-(AlxGa1−x)2O3 films using atom probe tomography
使用原子探针断层扫描对 β-(AlxGa1−x)2O3 薄膜中的化学异质性进行原子尺度研究
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:4
- 作者:
B. Mazumder;Jith Sarker;Yuewei Zhang;Jared M. Johnson;Menglin Zhu;S. Rajan;Jinwoo Hwang - 通讯作者:
Jinwoo Hwang
Optical and electronic effects of rapid thermal annealing at Ir–Ga2O3 interfaces
Ir-Ga2O3 界面快速热退火的光学和电子效应
- DOI:
10.1063/5.0090161 - 发表时间:
2022 - 期刊:
- 影响因子:3.2
- 作者:
Daram N. Ramdin;M. Haseman;Hsien;K. Leedy;Jinwoo Hwang;L. Brillson - 通讯作者:
L. Brillson
The strong influence of Ti, Zr, Hf solutes and their oxidation on microstructure and performance of Nb3Sn superconductors
Ti、Zr、Hf溶质及其氧化对Nb3Sn超导体微观结构和性能的强烈影响
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:6.2
- 作者:
Xingchen Xu;X. Peng;J. Rochester;M. Sumption;J. Lee;G. C. Ortiz;Jinwoo Hwang - 通讯作者:
Jinwoo Hwang
Jinwoo Hwang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinwoo Hwang', 18)}}的其他基金
Collaborative Research: Experimentally Informed Modeling of Structural Heterogeneity and Deformation of Metallic Glasses
合作研究:金属玻璃结构异质性和变形的实验知情建模
- 批准号:
2104724 - 财政年份:2021
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
CAREER: Novel Debye Waller Thermometry of Oxide Interfaces for Reducing Thermal Interface Resistance
职业:用于降低热界面电阻的新型氧化物界面德拜沃勒测温法
- 批准号:
1847964 - 财政年份:2019
- 资助金额:
$ 29.69万 - 项目类别:
Continuing Grant
Correlating structural heterogeneity to deformation in metallic glasses
将金属玻璃的结构异质性与变形相关联
- 批准号:
1709290 - 财政年份:2017
- 资助金额:
$ 29.69万 - 项目类别:
Continuing Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 29.69万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant