Collaborative Research: Friction on 2D Materials -- Understanding the Critical Role of Edge Chemistry

合作研究:二维材料上的摩擦——了解边缘化学的关键作用

基本信息

  • 批准号:
    1727571
  • 负责人:
  • 金额:
    $ 31.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Two-dimensional layered materials play important roles in a variety of applications, one of which is as a solid lubricant that minimizes friction and wear. Many two-dimensional layered materials exhibit ultra-low friction only under the "proper" environmental conditions, and the ideal environment may vary from material to material. One explanation for this environmental sensitivity comes from the fact that two-dimensional materials have not only the slippery topmost surface, but also surface step edges where the topmost layer starts or stops. Such surface sites may react chemically with molecules in the environment, like water and hydrocarbons, which will in turn affect friction. This project develops a fundamental understanding of the critical role of the ubiquitous step edges and their reactions with environmental gases in determining friction of two-dimensional materials. This basic research on surface chemistry can lead to new classes of lubricants and impact other applications, such as advanced electronics, where the edge of the 2D materials play a strong role.The common feature of two-dimensional materials is atomically-flat layers with weak inter-lamellar interactions, leading to low shear resistance between layers, which has long been believed to be the origin of super-lubricity. This simple picture does not explain lubrication failure of graphite in vacuum, poor performance of molybdenum disulfide in humid air, and poor lubricity of boric acid in dry air. The work is based on the premise that geometrically-flat lamellae are necessary for super-lubricity, but not sufficient; attaining ultra-low friction requires both the low-corrugation potential surface of the basal plane and proper passivation of edge sites of the basal plane. This hypothesis will be tested through judicious experimental design and state-of-the-art surface analysis methods as well as molecular dynamics simulations that can model chemical reactions at sliding interfaces. This research will address the following key questions: (i) what is the intrinsic reason that friction of two-dimensional layered materials is sensitive to humidity in the environment and why do different materials exhibit very different humidity dependence; (ii) what is the molecular origin of the frictional response of graphite step edges; and (iii) what are the factors governing interface fracture and inter-lamellar slip of two-dimensional materials in various environments. The grant supports a researcher exchange program between two institutions emphasizing the engagement of underrepresented groups.
二维层状材料在各种应用中发挥着重要作用,其中之一是作为固体润滑剂,最大限度地减少摩擦和磨损。许多二维层状材料只有在“适当”的环境条件下才会表现出超低摩擦,而理想的环境可能因材料而异。对这种环境敏感性的一种解释来自这样的事实:二维材料不仅具有光滑的最顶层表面,而且还具有最顶层开始或停止的表面台阶边缘。这些表面位点可能会与环境中的分子(例如水和碳氢化合物)发生化学反应,进而影响摩擦。该项目对普遍存在的阶梯边缘及其与环境气体的反应在确定二维材料摩擦方面的关键作用有了基本的了解。这项关于表面化学的基础研究可以催生新型润滑剂并影响其他应用,例如先进电子学,其中二维材料的边缘发挥着重要作用。二维材料的共同特征是原子级平坦的层,具有弱层间相互作用,导致层间剪切阻力​​低,长期以来人们认为这是超润滑性的起源。这个简单的图并不能解释石墨在真空中润滑失效、二硫化钼在潮湿空气中性能差以及硼酸在干燥空气中润滑性差。这项工作的前提是几何平坦的薄片对于超润滑性是必要的,但还不够。获得超低摩擦需要基面的低波纹势表面和基面边缘部位的适当钝化。这一假设将通过明智的实验设计和最先进的表面分析方法以及可以模拟滑动界面化学反应的分子动力学模拟来检验。本研究将解决以下关键问题:(i)二维层状材料的摩擦对环境湿度敏感的内在原因是什么,以及为什么不同的材料表现出截然不同的湿度依赖性; (ii) 石墨台阶边缘摩擦响应的分子起源是什么; (iii) 影响二维材料在不同环境下界面断裂和层间滑移的因素有哪些。该赠款支持两个机构之间的研究人员交流计划,强调代表性不足群体的参与。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measuring nanoscale friction at graphene step edges
  • DOI:
    10.1007/s40544-019-0334-y
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Zhe Chen;Seong H. Kim
  • 通讯作者:
    Zhe Chen;Seong H. Kim
Chemical and physical origins of friction on surfaces with atomic steps
  • DOI:
    10.1126/sciadv.aaw0513
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Chen, Zhe;Khajeh, Arash;Kim, Seong H.
  • 通讯作者:
    Kim, Seong H.
Origin of High Friction at Graphene Step Edges on Graphite
石墨烯阶梯边缘高摩擦力的起源
  • DOI:
    10.1021/acsami.0c18098
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Chen, Zhe;Khajeh, Arash;Martini, Ashlie;Kim, Seong H.
  • 通讯作者:
    Kim, Seong H.
Atomic Force Microscopy (AFM) Analysis of an Object Larger and Sharper than the AFM Tip
  • DOI:
    10.1017/s1431927619014697
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Chen, Zhe;Luo, Jiawei;Kim, Seong H.
  • 通讯作者:
    Kim, Seong H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seong Kim其他文献

The Effects of Institutions on the Labour Market Outcomes: Cross-country Analysis
制度对劳动力市场结果的影响:跨国分析
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yong;Seong Kim;Tae Bong Kim
  • 通讯作者:
    Tae Bong Kim
Analysis of resin flow during nano-imprinting lithographic process
纳米压印光刻过程中树脂流动分析
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joonhyeon Kang;Seong Kim;Y. S. Woo;W. Lee
  • 通讯作者:
    W. Lee
Institutions for more sustainable cities: eco-efficiency and equity improvements for better environmental management
建设更可持续城市的机构:提高生态效率和公平性,以实现更好的环境管理
  • DOI:
    10.7282/t3kk9bhh
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seong Kim
  • 通讯作者:
    Seong Kim

Seong Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seong Kim', 18)}}的其他基金

GOALI: Understanding Tribological Properties of Thermally-Synthesized Carbon
目标:了解热合成碳的摩擦学特性
  • 批准号:
    2315343
  • 财政年份:
    2024
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
Understanding Mesoscale Structures of Nanocrystalline Domains in Silk using Sum Frequency Generation Vibrational Spectroscopy
使用和频产生振动光谱法了解丝绸中纳米晶域的介观结构
  • 批准号:
    2203635
  • 财政年份:
    2022
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Continuing Grant
2022 Gordon Research Conference on Tribology: Understanding Sliding Interfaces to Master Tribological Systems Across Length Scales; Lewiston, Maine; 25 June to 1 July 2022
2022 年戈登摩擦学研究会议:了解滑动界面以掌握跨长度尺度的摩擦学系统;
  • 批准号:
    2222062
  • 财政年份:
    2022
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanistic Understanding of Chemical Activation in Shear-Driven Manufacturing Processes
合作研究:剪切驱动制造过程中化学活化的机理理解
  • 批准号:
    2038494
  • 财政年份:
    2021
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
Mechanochemistry of Silicate Glass Surface: Mixed Modifier Effect on Resistance to Frictional Subsurface Damage
硅酸盐玻璃表面的机械化学:混合改性剂对抵抗次表面摩擦损伤的影响
  • 批准号:
    2011410
  • 财政年份:
    2020
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Run-In and Superlubricity of Diamond-Like Carbon Coatings from a Tribochemical Perspective
合作研究:从摩擦化学角度理解类金刚石碳涂层的磨合和超润滑性
  • 批准号:
    1912199
  • 财政年份:
    2019
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
Fundamental Mechanisms for Mechanochemical Behaviors of Glass Surfaces - An Integrated Experimental and Computational Approach
玻璃表面机械化学行为的基本机制 - 综合实验和计算方法
  • 批准号:
    1609107
  • 财政年份:
    2016
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
Lubrication by Chemical Reaction Products at Sliding Interface
滑动界面处的化学反应产物润滑
  • 批准号:
    1435766
  • 财政年份:
    2014
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
Glass Surface Chemistry - Understanding Effects of Alkali Ions on Water Activity on Glass
玻璃表面化学 - 了解碱离子对玻璃水活度的影响
  • 批准号:
    1207328
  • 财政年份:
    2012
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH EAGER: Sum-frequency generation (SFG) vibration study of structure and enzymatic hydrolysis activities of crystalline cellulose in biomass
合作研究热切:生物质中结晶纤维素的结构和酶水解活性的和频发生(SFG)振动研究
  • 批准号:
    1152824
  • 财政年份:
    2011
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant

相似国自然基金

柴燃联合大功率摩擦离合器涨圈密封失效机理与摩擦界面改形改性方法研究
  • 批准号:
    52305176
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
织物基空气击穿直流摩擦纳米发电机的高电输出特性研究
  • 批准号:
    52303055
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
井下钻具轴承用金刚石复合片表面仿生织构设计及其摩擦学性能研究
  • 批准号:
    42372357
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
中美贸易摩擦对中国科技创新的影响研究:基于国际科技交流合作的视角
  • 批准号:
    72303211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳滤选择性分离过程的离子界面平衡-孔道摩擦传质机制及调控研究
  • 批准号:
    52300103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Electrotunable and Curvature-Dependent Friction at Nanoscale Contacts Lubricated by Ionic Liquids
合作研究:离子液体润滑纳米级接触处的电可调和曲率相关摩擦
  • 批准号:
    2216162
  • 财政年份:
    2023
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Validated Complementarity Contact Conditions for Suction-Friction of Multiphasic Soft Materials
合作研究:验证多相软材料吸力摩擦的互补接触条件
  • 批准号:
    2224371
  • 财政年份:
    2023
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Control of Contact Friction of Van der Waals Heterostructures
合作研究:范德华异质结构接触摩擦的控制
  • 批准号:
    2306038
  • 财政年份:
    2023
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Electrotunable and Curvature-Dependent Friction at Nanoscale Contacts Lubricated by Ionic Liquids
合作研究:离子液体润滑纳米级接触处的电可调和曲率相关摩擦
  • 批准号:
    2216256
  • 财政年份:
    2023
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Validated Complementarity Contact Conditions for Suction-Friction of Multiphasic Soft Materials
合作研究:验证多相软材料吸力摩擦的互补接触条件
  • 批准号:
    2224380
  • 财政年份:
    2023
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了