Parity-Time Symmetric Wireless Telemetry Systems for Implantable Microsensors

用于植入式微传感器的奇偶时间对称无线遥测系统

基本信息

  • 批准号:
    1711409
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

The capability to accurately and continuously monitor physiological parameters (e.g. pressures) in body organs enables effective management of many chronic diseases, as the world is ageing rapidly. In the year 2010, US already had 40.3 million people aged 65 and older (accounting for 13 percent of total population). The ratio is projected to reach 20.9 percent by 2050. In this research, a novel class of wireless biomedical implants will be investigated for sensitive, long-term monitoring of physiological parameters in human bodies, needed for managing chronic diseases (e.g. eye disease, heart failure, or brain injury), and for improving patients' quality of life. Battery-free implantable sensors have been growing rapidly in clinical uses because they have advantages of zero power consumption, potentially allowing for long-lifetime and maintenance-free operation. Nonetheless, one of the primary challenges for these implantable sensors lies in how to accurately and robustly detect physiological parameters from electrically-lossy small sensors using radio-frequency (RF) signals. The proposed parity-time (PT)-symmetric wireless sensor system will enable new ways to manipulate the RF interrogation between the implantable microsensor and the external reader, aiming to realize wireless sensing and detection with high sensitivity, high sensing resolution, and large modulation depth. The educational impact of this proposed project will also be significant. The integrated outreach program will be effective due to the visually appealing nature of micro-/nano-devices, sensors, and circuits. The PIs will develop new courses and outreach activities in Michigan Science Center and Wayne State University's established channels, including ReBUILDetroit Program and Richard Barber Interdisciplinary Research Program, for recruiting under-represented minorities in the Detroit area.The goal of this research project is to experimentally demonstrate the generalized PT-symmetry theory in RF and microwave electronics, as well as their envisaged applications in high-performance wireless sensors. The sensitivity and signal-to-noise ratio (SNR) of the passive wireless micro-/nano-sensors are often hindered by low modal quality factor (Q-factor), due to the limited space and power dissipations associated with the skin effect, dielectric losses, eddy currents, and etc. The concept of PT-symmetry (spatial inversion and time-reversal symmetry) was first discovered in quantum theory, and has recently become an active research area in fundamental physics, including optics, acoustics, and electromagnetism. A telemetry system with its equivalent-circuit topology obeying the PT-symmetry has not yet been investigated for biotelemetry and wireless sensing applications (13.56 MHz - low GHz). This new telemetry system, although having a non-Hermitian Hamiltonian, may exhibit purely real eigenfrequencies that lead to sharp and deep resonances, with the effective quality factor (Q-factor) beyond limitations for passive systems, in which conventional loop-antenna is deployed as a reader. A sharp, narrowband reflection peak has been a long-sought goal for telemetric sensor systems, because of its substantial implications for superior detection and low cumulative noises. If successful, the proposed PT-symmetric wireless sensor system will resolve the long-standing problem of low Q-factor and limited sensitivity in wireless microelectromechanical and nanotechnological sensors, composed of inductor-capacitor (LC) resonators with miniaturized footprints. This proposed research will advance fundamental knowledge in biomedical implants, wearable electronics, medical diagnosis, healthcare internet of things (IoT), microwave imaging, wireless communication, and non-Hermitian PT-symmetric physics.
随着世界迅速老龄化,准确、持续监测身体器官的生理参数(例如压力)的能力可以有效管理许多慢性疾病。 2010年,美国65岁及以上人口已达4030万(占总人口的13%)。预计到 2050 年,这一比例将达到 20.9%。在这项研究中,将研究一种新型无线生物医学植入物,用于对人体生理参数进行敏感、长期监测,这是治疗慢性疾病(例如眼病、心脏病、心脏病)所需的。失败或脑损伤),并改善患者的生活质量。无电池植入式传感器在临床应用中迅速增长,因为它们具有零功耗的优点,有可​​能实现长寿命和免维护操作。尽管如此,这些植入式传感器面临的主要挑战之一在于如何使用射频 (RF) 信号准确、稳健地检测来自电损耗小型传感器的生理参数。所提出的奇偶时间(PT)对称无线传感器系统将为操纵植入式微传感器和外部读取器之间的射频询问提供新方法,旨在实现高灵敏度、高传感分辨率和大调制深度的无线传感和检测。该拟议项目的教育影响也将是巨大的。由于微/纳米设备、传感器和电路具有视觉吸引力,综合推广计划将是有效的。 PI 将在密歇根科学中心和韦恩州立大学的既定渠道中开发新课程和外展活动,包括 ReBUILDetroit 计划和 Richard Barber 跨学科研究计划,以招募底特律地区代表性不足的少数族裔。该研究项目的目标是通过实验展示射频和微波电子学中的广义 PT 对称理论,以及它们在高性能无线传感器中的设想应用。由于有限的空间和与集肤效应相关的功耗,无源无线微/纳米传感器的灵敏度和信噪比 (SNR) 通常受到低模态品质因数 (Q 因子) 的阻碍,介电损耗、涡流等。PT对称性(空间反演和时间反演对称性)的概念最早在量子理论中发现,最近已成为基础物理领域的一个活跃研究领域,包括光学、声学、电磁学。尚未针对生物遥测和无线传感应用(13.56 MHz - 低 GHz)研究等效电路拓扑遵循 PT 对称性的遥测系统。这种新的遥测系统虽然具有非厄米哈密顿量,但可能会表现出纯粹的真实本征频率,从而导致尖锐和深的谐振,其有效品质因数(Q 因数)超出了部署传统环形天线的无源系统的限制作为一名读者。尖锐的窄带反射峰一直是遥测传感器系统长期追求的目标,因为它对卓越的检测和低累积噪声具有重大影响。如果成功,所提出的 PT 对称无线传感器系统将解决无线微机电和纳米技术传感器中长期存在的低 Q 因子和有限灵敏度的问题,该传感器由具有小型化封装的电感电容 (LC) 谐振器组成。这项拟议的研究将推进生物医学植入物、可穿戴电子产品、医疗诊断、医疗保健物联网 (IoT)、微波成像、无线通信和非厄米 PT 对称物理学的基础知识。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized parity–time symmetry condition for enhanced sensor telemetry
用于增强传感器遥测的广义奇偶校验和时间对称条件
  • DOI:
    10.1038/s41928-018-0072-6
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    34.3
  • 作者:
    Pai;M. Sakhdari;M. Hajizadegan;Qingsong Cui;M. Cheng;R. El;A. Alú
  • 通讯作者:
    A. Alú
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pai-Yen Chen其他文献

Pai-Yen Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pai-Yen Chen', 18)}}的其他基金

Electromagnetic Physically-Unclonable Functions Generated by Graphene Radio-Frequency Circuits
石墨烯射频电路产生的电磁物理不可克隆功能
  • 批准号:
    2229659
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Electromagnetic Physically-Unclonable Functions Generated by Graphene Radio-Frequency Circuits
石墨烯射频电路产生的电磁物理不可克隆功能
  • 批准号:
    2229659
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Wavelength-Scalable, Room-Temperature Mid-Infrared Photodetectors Based on Multiphoton-Assisted Tunneling
合作研究:基于多光子辅助隧道的波长可扩展、室温中红外光电探测器
  • 批准号:
    2210977
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
I-Corps: Accurate, Contiguous and Portable Wireless Intraocular Contact Lens Pressure Sensors
I-Corps:准确、连续、便携式无线眼内隐形眼镜压力传感器
  • 批准号:
    2001328
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Parity-Time Symmetric Wireless Telemetry Systems for Implantable Microsensors
用于植入式微传感器的奇偶时间对称无线遥测系统
  • 批准号:
    1917678
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Integrated Research and Education on Self-Activated, Transparent Harmonics-Based Wireless Sensing Systems Using Graphene Bioelectronics
职业:利用石墨烯生物电子学对自激活、透明谐波无线传感系统进行综合研究和教育
  • 批准号:
    1752123
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Integrated Research and Education on Self-Activated, Transparent Harmonics-Based Wireless Sensing Systems Using Graphene Bioelectronics
职业:利用石墨烯生物电子学对自激活、透明谐波无线传感系统进行综合研究和教育
  • 批准号:
    1914420
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似国自然基金

宇称-时间对称的介观电路系统物理性质及应用研究
  • 批准号:
    62305028
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宇称-时间对称光学系统中光子自旋霍尔效应调控与精密传感研究
  • 批准号:
    12374273
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
微谐振腔宇称时间反对称量子调控与高精度微光学陀螺研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
宇称时间对称腔光力系统的量子态传递效应研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于铌酸锂薄膜微腔的宇称-时间对称性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The contributions of interaurally correlated signals and interaurally symmetric place of stimulation for the binaural auditory system
耳间相关信号和耳间对称刺激位置对双耳听觉系统的贡献
  • 批准号:
    10550180
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
Parity-Time Symmetric Wireless Telemetry Systems for Implantable Microsensors
用于植入式微传感器的奇偶时间对称无线遥测系统
  • 批准号:
    1917678
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
The Effect of High Intensity Interval Training and Surgical Weight Loss On Distal Symmetric Polyneuropathy Outcomes
高强度间歇训练和手术减肥对远端对称性多发性神经病结果的影响
  • 批准号:
    10395541
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
The Effect of High Intensity Interval Training and Surgical Weight Loss On Distal Symmetric Polyneuropathy Outcomes
高强度间歇训练和手术减肥对远端对称性多发性神经病结果的影响
  • 批准号:
    10159243
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
The Effect of High Intensity Interval Training and Surgical Weight Loss On Distal Symmetric Polyneuropathy Outcomes
高强度间歇训练和手术减肥对远端对称性多发性神经病结果的影响
  • 批准号:
    9925079
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了