Exploring Deformation Mechanisms in Metallic Nanostructures Under Extreme Conditions of Temperature and Strain Rate

探索极端温度和应变率条件下金属纳米结构的变形机制

基本信息

  • 批准号:
    1710736
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Non-Technical Description:Understanding the mechanical behavior of nano-crystalline metallic solids under extreme conditions of pressure and low temperatures is of great interest to engineering applications involving fusion reactors (for alternative energy), blast loadings and armors (national defense), and asteroid impacts (progress of science), among others. Under such loading a typical engineering material, notably a metal, fails in a brittle glass-like manner even though at ambient conditions it fails in a plastic fashion by absorbing substantial energy. The mechanical behavior of metals is dependent upon the size of the grains that collectively form its structure. By simulating individual grains by isolated nanopillars we will study if these pillars (and eventually individual grains) will deform in a ductile fashion even when they are subjected to aforesaid extreme conditions. If they retain the same ductility as under ambient conditions then this research would have taken the first major step to develop new metallic materials that could revolutionize the design of energy-absorbing blast resistant civil, nuclear, and defense structures, including personal protective equipment (helmet and body armors) for reducing traumatic brain injuries. This research should also lead to fundamental scientific advances in the area of high energy materials physics. The work proposed here is a true collaboration between material scientists employing advanced nano-fabrication and microscopy techniques; physicists using state of the art multi-scale modeling strategies that encompass basic principles which govern the inter-atomic structures and forces; and mechanical engineers employing the most sophisticated optics and experimental techniques for characterizing the mechanical behavior of engineering solids. As such, it provides excellent training for graduate students and undergraduates in the area of interdisciplinary science and technology. As these students go into the work force, they will be more able than their peers to cross boundaries and combine basic science and high level engineering. To bring the research ideas and results more broadly to the community, graduate students funded under this grant will also participate in the High School Summer Research Program at UCLA. This project will thus support the societal needs of encouraging and training young talents into the fields of science and engineering. Technical Description: This project will develop understanding the mechanical behavior of nano-structured metallic solids under extreme conditions of pressure, high rates of loading (blasts and explosions), and low temperature (below freezing). The above goal will be accomplished by carrying out a series of novel experiments, backed by multiscale modeling and transmission electron microscopy (TEM) analysis, by loading TEM-ready single crystal nanopillar samples of fcc (Cu) and bcc (Mo) metals of varying lengths (50 nm to 100 nm) and aspect ratios (50 nm to 100 nm in diameter) by laser-generated stress waves of sub-nanosecond rise times, under extreme conditions of stress (greater than 20 GPa), strain rate (higher than 108s-1), and temperature (cryogenic). A new method is proposed to load the nanopillars directly under uniform tension. This should eliminate the lattice friction and local pressure effects present under compression. When combined with cryogenic testing, loading under uniform tension should substantially increase the internal stress in the material. This should result in newer dislocation nucleation and mobility mechanisms and provide further insights into the present dynamic performance limits of these metals. Because of very high internal stress, this study is likely to provide the first ever experimental evidence for dislocation-free plasticity in shocked solids. To bring the research ideas and results more broadly to the community, graduate students funded under this grant will also participate in the High School Summer Research Program at UCLA. This project will thus support the societal needs of encouraging and training young talents into the fields of science and engineering.
非技术描述:了解纳米晶金属固体在极端压力和低温条件下的机械行为对于涉及聚变反应堆(用于替代能源)、爆炸载荷和装甲(国防)以及小行星的工程应用非常有意义影响(科学进步)等。 在这种负载下,典型的工程材料,尤其是金属,即使在环境条件下通过吸收大量能量而以塑料方式失效,也会以类似玻璃的方式失效。金属的机械行为取决于共同形成其结构的晶粒的尺寸。通过用孤立的纳米柱模拟单个晶粒,我们将研究这些柱(以及最终的单个晶粒)是否会以延性方式变形,即使它们受到上述极端条件的影响。 如果它们保持与环境条件下相同的延展性,那么这项研究将迈出开发新金属材料的第一步,这种材料可以彻底改变吸能防爆民用、核和国防结构的设计,包括个人防护设备(头盔)和防弹衣)以减少创伤性脑损伤。这项研究还将带来高能材料物理领域的基础科学进步。 这里提出的工作是采用先进纳米制造和显微镜技术的材料科学家之间的真正合作;物理学家使用最先进的多尺度建模策略,其中包含控制原子间结构和力的基本原理;机械工程师采用最先进的光学和实验技术来表征工程固体的机械行为。 因此,它为跨学科科学技术领域的研究生和本科生提供了良好的培训。 当这些学生进入劳动力市场时,他们将比同龄人更有能力跨越界限,将基础科学和高水平工程结合起来。为了将研究想法和成果更广泛地推向社区,获得这笔资助的研究生还将参加加州大学洛杉矶分校的高中暑期研究项目。因此,该项目将支持鼓励和培养年轻人才进入科学和工程领域的社会需求。 技术描述:该项目将加深对纳米结构金属固体在极端压力、高负载率(爆炸和爆炸)和低温(冰点以下)条件下的机械行为的理解。上述目标将通过进行一系列新颖的实验来实现,这些实验以多尺度建模和透射电子显微镜 (TEM) 分析为支持,加载不同种类的 fcc (Cu) 和 bcc (Mo) 金属的 TEM 就绪单晶纳米柱样品。在极端应力条件下(大于 20 GPa)、应变率(高于 108s-1)和温度(低温)。提出了一种在均匀张力下直接加载纳米柱的新方法。 这应该消除压缩下存在的晶格摩擦和局部压力效应。 当与低温测试相结合时,均匀张力下的负载会大大增加材料的内应力。 这应该会产生更新的位错成核和迁移机制,并为这些金属目前的动态性能极限提供进一步的见解。 由于非常高的内应力,这项研究可能为冲击固体中的无位错塑性提供第一个实验证据。为了将研究想法和成果更广泛地推广到社区,获得这笔资助的研究生还将参加加州大学洛杉矶分校的高中暑期研究项目。因此,该项目将支持鼓励和培养年轻人才进入科学和工程领域的社会需求。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The influence of nano/micro sample size on the strain-rate sensitivity of plastic flow in tungsten
纳米/微米样品尺寸对钨中塑性流动应变率敏感性的影响
  • DOI:
    10.1016/j.ijplas.2020.102854
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Pratyush Srivastava;K. Jiang;Yinan Cui;Edgar Olivera;N. Ghoniem;V. Gupta
  • 通讯作者:
    V. Gupta
Stishovite nucleation at low shock pressures in soda-lime glass
钠钙玻璃中低冲击压力下的 Stishovite 成核
  • DOI:
    10.1016/j.actamat.2021.117124
  • 发表时间:
    2021-08-15
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Pratyush Srivastava;Koichi Tanaka;B. Ramirez;V. Gupta
  • 通讯作者:
    V. Gupta
Influence of Size on the Fractal Dimension of Dislocation Microstructure
尺寸对位错微结构分形维数的影响
  • DOI:
    10.3390/met9040478
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Cui, Yinan;Ghoniem, Nasr
  • 通讯作者:
    Ghoniem, Nasr
A continuum dislocation-based model of wedge microindentation of single crystals
基于连续位错的单晶楔形微压痕模型
  • DOI:
    10.1016/j.ijplas.2018.10.008
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    G. Po;Yue Huang;N. Ghoniem
  • 通讯作者:
    N. Ghoniem
Computational 3-dimensional dislocation elastodynamics
计算 3 维位错弹性动力学
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vijay Gupta其他文献

Emerging role of tyrosine phosphatase, TCPTP, in the organelles of the early secretory pathway.
酪氨酸磷酸酶 TCPTP 在早期分泌途径细胞器中的新作用。
  • DOI:
    10.1016/j.bbamcr.2013.01.004
  • 发表时间:
    2013-05-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Madhavi Muppirala;Vijay Gupta;G. Swarup
  • 通讯作者:
    G. Swarup
Decentralized control across bit-limited communication channels: an example
跨位有限通信通道的分散控制:示例
Syntaxin 17 cycles between the ER and ERGIC and is required to maintain the architecture of ERGIC and Golgi
Syntaxin 17 在 ER 和 ERGIC 之间循环,是维持 ERGIC 和高尔基体结构所必需的
  • DOI:
    10.1042/bc20110006
  • 发表时间:
    2011-07-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Madhavi Muppirala;Vijay Gupta;G. Swarup
  • 通讯作者:
    G. Swarup
Tyrosine phosphorylation of a SNARE protein, syntaxin 17: implications for membrane trafficking in the early secretory pathway.
SNARE 蛋白突触蛋白 17 的酪氨酸磷酸化:对早期分泌途径中膜运输的影响。
  • DOI:
    10.1016/j.bbamcr.2012.09.003
  • 发表时间:
    2012-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Madhavi Muppirala;Vijay Gupta;G. Swarup
  • 通讯作者:
    G. Swarup
q-Discrete Operators and Their Results
q-离散算子及其结果
  • DOI:
    10.1007/978-1-4614-6946-9_2
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Aral;Vijay Gupta;R. Agarwal
  • 通讯作者:
    R. Agarwal

Vijay Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vijay Gupta', 18)}}的其他基金

Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
  • 批准号:
    2222097
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
  • 批准号:
    2334551
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Adaptive, Human-centric Demand-side Flexibility Coordination At-scale in Electric Power Networks
合作研究:CPS:中:电力网络中大规模的自适应、以人为中心的需求方灵活性协调
  • 批准号:
    2208794
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Adaptive, Human-centric Demand-side Flexibility Coordination At-scale in Electric Power Networks
合作研究:CPS:中:电力网络中大规模的自适应、以人为中心的需求方灵活性协调
  • 批准号:
    2300355
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AI Institute: Planning: AI-Enabled Secure and Responsive Smart Manufacturing
人工智能研究院:规划:人工智能赋能的安全响应式智能制造
  • 批准号:
    2020246
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Modeling and Learning-based Design of Social Distancing Policies for COVID-19
RAPID:协作研究:针对 COVID-19 的社交距离政策的建模和基于学习的设计
  • 批准号:
    2030018
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Understanding and Controlling Atomic-Scale Mechanisms for Imparting Room Temperature Ductility in Tungsten and BCC Metals
了解和控制赋予钨和 BCC 金属室温延展性的原子尺度机制
  • 批准号:
    1727740
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS:Small:Collaborative Research: Incentivizing Desirable User Behavior in a Class of CPS
CPS:Small:协作研究:在一类 CPS 中激励期望的用户行为
  • 批准号:
    1739295
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于软物质慢动力学模型的再制干酪结构形变分析与功能定向调控机制
  • 批准号:
    32372381
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
柔性光电系统形变与光强耦合机制及抗干扰方法研究
  • 批准号:
    12302216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
贫岩浆型马拉维裂谷的壳幔结构与形变机制
  • 批准号:
    42374054
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
增强型地热系统注采过程热-流-固-化耦合裂缝形变机制与流动换热调控方法研究
  • 批准号:
    52304003
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深冷形变诱导亚微/纳米晶的亚稳β锆合金时效析出行为及强韧化机制研究
  • 批准号:
    52364050
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

4D Printed Origami Structures: Deformation Mechanisms and Mechanics
4D 打印折纸结构:变形机制和力学
  • 批准号:
    DP240103328
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
  • 批准号:
    2338346
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313861
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Thermo mechanical effects on Ti deformation mechanisms in cold dwell
热机械效应对冷驻留钛变形机制的影响
  • 批准号:
    2879298
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Collaborative Research: Deformation Mechanisms in Microstructurally Tailored High Strength Alloys Near the Ideal Limit
合作研究:接近理想极限的微观结构定制高强度合金的变形机制
  • 批准号:
    2310306
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了