Collaborative Research: Conformal and robust integrated infrared spectroscopic sensors

合作研究:共形且坚固的集成红外光谱传感器

基本信息

  • 批准号:
    1709212
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

The program aims to pioneer a flexible optical sensor which can be conformally attached to human skin for continuous physiological monitoring. Unlike conventional optical sensors which are often bulky, costly, and involve mechanical moving parts which compromise their robustness, the proposed effort will leverage advanced integrated photonic technologies to combine miniaturized optical components on a flexible polymer membrane. The proposed sensor is ideally suited for continuous glucose monitoring. Instead of relying on fingertip pricking with lancets to draw blood for intermittent analysis, the proposed sensor will assume a minimally invasive, tattoo-like form factor for continuous monitoring of glucose concentration in body fluids.Integrated photonic devices are uniquely poised for in-vivo sensing, diagnostics, therapeutics, and stimulation functions, given their small form factor, low power consumption, robustness, large multiplexing capacity, as well as strong light-molecule/tissue interactions enabled by tight optical confinement in these devices. Nevertheless, conventional photonic integration is predominantly based on rigid semiconductor substrates, and their mechanical stiffness makes the resulting devices inherently incompatible with soft biological tissues. Further, while optical spectroscopy based on bench top instruments has become the gold standard in analytical chemistry, integrated spectroscopic sensors remain largely unexplored. This program aims to resolve the challenges by combining flexible photonic integration and on-chip infrared spectroscopic sensing technologies to pioneer a wearable photonic sensing system on conformal plastic substrates. Specifically, a minimally invasive epidermal sensor for continuous glucose monitoring will be demonstrated as a proof-of-concept model platform. The two-fold intellectual merits of the program lie in the unconventional multi-material photonic integration approach on conformal substrates as well as the innovative spectroscopic sensor design. Photonic integration on conformal substrates poses a diverse set of often mutually conflicting requirements on the mechanical and optical properties of constituent materials. In this program, a transformative multi-material, multi-functional integration approach on flexible substrates will be pursued where each material is seamlessly integrated into the process flow and strategically shaped and positioned so as to make use of its advantageous properties while circumventing its limitations. On the spectroscopic sensing front, miniaturization and integration of spectrometers present a major technical barrier towards spectroscopic sensor integration onto chip-scale platforms. Rather than downscaling traditional spectrometers, the program will develop a novel sensor design with significantly improved system simplicity, ruggedness, reproducibility and specificity, enabling wearable sensing applications. The scientific research will be tightly integrated with curriculum development, undergraduate student training, and development of hands-on modules for optics education. In addition to augmenting classroom education at both institutes, the program will promote the free sharing and distribution of knowledge by developing online courses through the MIT OpenCourseWare and edX initiatives.
该项目旨在开创一种柔性光学传感器,可以保形地附着在人体皮肤上以进行连续的生理监测。传统的光学传感器往往体积庞大、成本高昂,并且涉及机械移动部件,从而损害了其鲁棒性,而与此不同的是,这项工作将利用先进的集成光子技术,将微型光学元件组合在柔性聚合物膜上。所提出的传感器非常适合连续血糖监测。所提出的传感器不是依靠用刺血针刺破指尖来抽血进行间歇性分析,而是采用微创、类似纹身的外形,用于连续监测体液中的葡萄糖浓度。集成光子设备非常适合体内传感、诊断、治疗和刺激功能,因为它们具有小外形尺寸、低功耗、稳健性、大复用能力,以及通过这些中的严格光学限制实现的强光-分子/组织相互作用设备。然而,传统的光子集成主要基于刚性半导体基板,其机械刚度使得所得设备本质上与软生物组织不兼容。此外,虽然基于台式仪器的光谱已成为分析化学的黄金标准,但集成光谱传感器在很大程度上仍未得到探索。该计划旨在通过结合灵活的光子集成和片上红外光谱传感技术来解决这些挑战,在保形塑料基板上开创可穿戴光子传感系统。具体来说,用于连续血糖监测的微创表皮传感器将作为概念验证模型平台进行展示。该项目的双重智力优势在于共形基板上的非常规多材料光子集成方法以及创新的光谱传感器设计。共形基板上的光子集成对组成材料的机械和光学性能提出了一系列经常相互冲突的要求。在该计划中,将在柔性基板上寻求一种变革性的多材料、多功能集成方法,其中每种材料都无缝集成到工艺流程中,并进行战略性的成形和定位,以便利用其有利的特性,同时规避其局限性。在光谱传感方面,光谱仪的小型化和集成化给光谱传感器集成到芯片级平台带来了主要的技术障碍。该计划不会缩小传统光谱仪的规模,而是开发一种新颖的传感器设计,显着提高系统的简单性、耐用性、再现性和特异性,从而实现可穿戴传感应用。科学研究将与课程开发、本科生培养以及光学教育实践模块的开发紧密结合。除了加强两个学院的课堂教育外,该计划还将通过麻省理工学院开放课程和 edX 计划开发在线课程,促进知识的免费共享和传播。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3D integrated photonics platform with deterministic geometry control
具有确定性几何控制的 3D 集成光子平台
  • DOI:
    10.1364/prj.375584
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    7.6
  • 作者:
    Michon, Jérôme;Geiger, Sarah;Li, Lan;Goncalves, Claudia;Lin, Hongtao;Richardson, Kathleen;Jia, Xinqiao;Hu, Juejun
  • 通讯作者:
    Hu, Juejun
Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?
  • DOI:
    10.1364/optica.5.001046
  • 发表时间:
    2018-05-08
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    D. Kita;Jérôme Michon;Steven G. Johnson;Juejun Hu
  • 通讯作者:
    Juejun Hu
High-performance and scalable on-chip digital Fourier transform spectroscopy
高性能、可扩展的片上数字傅里叶变换光谱
  • DOI:
    10.1038/s41467-018-06773-2
  • 发表时间:
    2018-10-23
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Kita DM;Miranda B;Favela D;Bono D;Michon J;Lin H;Gu T;Hu J
  • 通讯作者:
    Hu J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juejun Hu其他文献

As[sub 2]S[sub 3]/Sr(Ti[sub 0.7]Co[sub 0.3])O[sub 3] and As[sub 2]S[sub 3]/Sr(Ti[sub 0.6]Fe[sub 0.4])O[sub 3] strip-loaded waveguides for integrated magneto-optical isolator applications
As[sub 2]S[sub 3]/Sr(Ti[sub 0.7]Co[sub 0.3])O[sub 3] 和 As[sub 2]S[sub 3]/Sr(Ti[sub 0.6]Fe[
  • DOI:
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Bi;Hyun;Juejun Hu;L. Kimerling;C. Ross
  • 通讯作者:
    C. Ross
A modular laboratory curriculum for teaching integrated photonics to students with diverse backgrounds
模块化实验室课程,用于向不同背景的学生教授集成光子学
  • DOI:
    10.1117/12.2523867
  • 发表时间:
    2019-07-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samuel Serna;N. Hidalgo;Janice Tjan;Kevin A. McComber;L. Kimerling;E. Verlage;Julie Diop;Juejun Hu;S. Saini;A. Agarwal;Gerald Gagnon;S. Preble;Gregory A. Howland;M. V. Niekerk;J. Steidle;Karl Mcnulty;J. Cardenas;Meiting Song;M. Popović;A. Khilo;P. Nagarkar;Farhad Vazehgoo;I. Moskowitz;Guiru Gu;Cheryl Schnitzer;E. Deveney;T. Kling;D. Petkie;J. Longacre
  • 通讯作者:
    J. Longacre
Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study
高织构纳米晶 PbTe 薄膜中的室温氧敏化:机理研究
  • DOI:
    10.1063/1.3653832
  • 发表时间:
    2011-10-31
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Jianfei Wang;Juejun Hu;P. Becla;A. Agarwal;L. Kimerling
  • 通讯作者:
    L. Kimerling
Breaking the energy-bandwidth limit of electro-optic modulators: Theory and a device proposal
打破电光调制器的能量带宽限制:理论和设备建议
  • DOI:
    10.1109/oic.2013.6552905
  • 发表时间:
    2013-05-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juejun Hu;Hongtao Lin;O. Ogbuu;Jifeng Liu;Lin Zhang;J. Michel
  • 通讯作者:
    J. Michel
Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength.
As2S3 硫系玻璃在 1550 nm 电信波长下的谐振腔增强光敏性。
  • DOI:
    10.1364/ol.35.000874
  • 发表时间:
    2010-03-15
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Juejun Hu;M. Torregiani;F. Morichetti;N. Carlie;A. Agarwal;K. Richardson;L. Kimerling;A. Melloni
  • 通讯作者:
    A. Melloni

Juejun Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juejun Hu', 18)}}的其他基金

Collaborative Research: FuSe:Substrate-inverted Multi-Material Integration Technology
合作研究:FuSe:衬底倒置多材料集成技术
  • 批准号:
    2328839
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329088
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe:Substrate-inverted Multi-Material Integration Technology
合作研究:FuSe:衬底倒置多材料集成技术
  • 批准号:
    2328839
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329088
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Combinatorial solution processing of optical phase change materials
合作研究:光学相变材料的组合溶液加工
  • 批准号:
    2225968
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PFI-RP: A high-performance, low-cost chip-scale platform for medical imaging
PFI-RP:用于医学成像的高性能、低成本芯片级平台
  • 批准号:
    2122581
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
ASCENT: PROWESS: Phase-change Reconfigurable Optical WavEfront Synthesis System
ASCENT:PROWESS:相变可重构光波前合成系统
  • 批准号:
    2132929
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Tellurene mid-infrared integrated photonics
合作研究:碲烯中红外集成光子学
  • 批准号:
    2023987
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
I-Corps: 6Sensing: Chip-scale Raman sensors
I-Corps:6Sensing:芯片级拉曼传感器
  • 批准号:
    1851293
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Thin-Film Chalcogenide Glass Materials for High-Quality Integrated Photonics
合作研究:用于高质量集成光子学的薄膜硫系玻璃材料
  • 批准号:
    1506605
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

超声耦合液固界面反应构筑固态锂电池“共形”界面研究
  • 批准号:
    52302238
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无限李共形超代数的若干问题研究
  • 批准号:
    12361006
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
曲面共形柔顺折展机构设计方法研究
  • 批准号:
    52305034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于薄膜IGZO和LCP的共形太赫兹智能超表面的研究
  • 批准号:
    62371272
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
柔性共形曲面结构力-声-电耦合增强微应变敏感机理研究
  • 批准号:
    52375571
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conformal Gradient-Index Lenses for Ultrasonic Wave Amplification and Improved Diagnostics
合作研究:用于超声波放大和改进诊断的共形梯度折射率透镜
  • 批准号:
    1914583
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Conformal Gradient-Index Lenses for Ultrasonic Wave Amplification and Improved Diagnostics
合作研究:用于超声波放大和改进诊断的共形梯度折射率透镜
  • 批准号:
    1914663
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Framework for Designing Conformal Stretchable Electronics
合作研究:设计共形可拉伸电子设备的计算框架
  • 批准号:
    1762324
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
International Collaborative Research on Technology, Production, and Circulation of the Incipient and Initial Jomon Pottery of Southern Kyushu by Archaeometric Methods
利用考古学方法对九州南部早期绳纹陶器的技术、生产和流通进行国际合作研究
  • 批准号:
    17KK0028
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Collaborative Research: Computational Framework for Designing Conformal Stretchable Electronics
合作研究:设计共形可拉伸电子设备的计算框架
  • 批准号:
    1762287
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了