Workshop: Recent Advances and Challenges in Discontinuous Galerkin Methods and Related Approaches

研讨会:不连续伽辽金方法及相关方法的最新进展和挑战

基本信息

  • 批准号:
    1720825
  • 负责人:
  • 金额:
    $ 1.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

The international conference entitled "Recent Advances and Challenges in Discontinuous Galerkin Methods and Related Approaches" will be held at the Institute for Mathematics and its Applications at the University of Minnesota from June 29 to July 1, 2017. This award supports junior participants' travel. The event brings together a variety of researchers from at least 14 countries/regions. They range from internationally renowned experts to early career mathematicians and PhD students. The event will summarize recent advances made both in the theory and implementation of the Discontinuous Galerkin and related numerical approaches, and to identify new challenges and opportunities in these areas. The conference will also have a significant educational component, with each talk required to feature introductory parts at a level accessible to graduate students, and ample discussion sessions throughout the conference. To further promote cross-pollination and mentoring, there will be moderated panel sessions where participants explore the frontiers of different research areas, possibilities of new connections between areas and new applications, and exciting opportunities of new collaborations. It will help junior researchers broaden their perspective and create research ties with more senior members in these fields.Discontinuous Galerkin and related approaches have been adopted in areas ranging from mechanical engineering to the simulation of muscles. In recent decades, deep theoretical advances have been made and wide-ranging applications discovered for these approaches. They often lead to design of novel methods (e.g. Hybridizable discontinuous Galerkin methods, Virtual Element Methods, etc.) with superior properties in terms of accuracy, versatility, robustness and computational efficiency. They also leave open many exciting problems. This conference presents a rare but timely opportunity to summarize recent advances both in the theory and implementation of these methods, identify new challenges, and map out future research directions in related areas. The bringing together of people from different fields such as engineers, applied mathematicians, national lab researchers, will lead to cross-fertilization of ideas that normally does not happen in a conference of this size.
2017年6月29日至2017年7月1日,将在明尼苏达大学的数学研究所及其应用研究所举行国际会议“不连续的盖尔金方法和相关方法的最新进展和挑战”。该奖项支持初级参与者的旅行。该活动汇集了来自至少14个国家/地区的各种研究人员。他们的范围从国际知名的专家到早期职业数学家和博士生。该事件将总结在不连续的盖尔金和相关数值方法的理论和实施中取得的最新进展,并确定这些领域的新挑战和机遇。会议还将有一个重要的教育部分,每次谈判都需要在研究生中访问的介绍性零件,并在整个会议期间进行充分的讨论会议。为了进一步促进交叉授粉和指导,将会举行主持的面板会议,参与者探索不同研究领域的前沿,领域与新应用程序之间新联系的可能性以及新合作的激动人心的机会。它将帮助初级研究人员扩大自己的观点,并与这些领域中更多的高级成员建立研究联系。在机械工程到模拟肌肉的领域,采用了杂乱无章的Galerkin和相关方法。近几十年来,已经实现了深厚的理论进步,并针对这些方法发现了广泛的应用。它们通常会导致新方法的设计(例如,在准确性,多功能性,鲁棒性和计算效率方面,具有出色特性的新方法(例如,可杂交的不连续的Galerkin方法,虚拟元素方法等)。他们还留下了许多令人兴奋的问题。这次会议提出了一个罕见但及时的机会,可以总结这些方法的理论和实施,确定新挑战并绘制相关领域的未来研究方向。来自不同领域的人们(例如工程师,应用数学家,国家实验室研究人员)的人们将导致通常不会在这种规模的会议中进行的思想交叉侵占。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanlai Chen其他文献

Fast $L^2$ Optimal Mass Transport via Reduced Basis Methods for the Monge--Ampère Equation
通过 Monge--Ampère 方程的简化基法快速 $L^2$ 优化传质
A seamless reduced basis element method for 2D Maxwell"s problem: An introduction
二维麦克斯韦问题的无缝简化基元方法:简介
Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell"s problem
基于后验误差估计的改进连续约束方法用于二维麦克斯韦问题的简化基近似
Multiple Solutions of Boundary Value Problems for nth-Order Singular Nonlinear Integrodifferential Equations in Abstract Spaces
抽象空间中n阶奇异非线性积分微分方程边值问题的多重解
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlai Chen;Tingqiu Cao;Baoxia Qin
  • 通讯作者:
    Baoxia Qin
A reduced basis warm-start iterative solver for the parameterized linear systems
参数化线性系统的减基热启动迭代求解器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shijin Hou;Yanlai Chen;Yinhua Xia
  • 通讯作者:
    Yinhua Xia

Yanlai Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanlai Chen', 18)}}的其他基金

Reduced Basis Enhancements of Neural Networks and Their Application to Quantum Materials Simulation
神经网络的减基增强及其在量子材料模拟中的应用
  • 批准号:
    2208277
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Implementation of a Contextualized Computing Pedagogy in STEM Core Courses and Its Impact on Undergraduate Student Academic Success, Retention, and Graduation
在 STEM 核心课程中实施情境化计算教学法及其对本科生学业成功、保留和毕业的影响
  • 批准号:
    2030552
  • 财政年份:
    2020
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Rigorous Development of an Efficient Reduced Collocation Approach for High-Dimensional Parametric Partial Differential Equations
严格开发高维参数偏微分方程的高效简化配置方法
  • 批准号:
    1719698
  • 财政年份:
    2017
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Developing reduced basis methods for Galerkin and Collocation framework
为 Galerkin 和 Collocation 框架开发简化基方法
  • 批准号:
    1216928
  • 财政年份:
    2012
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant

相似国自然基金

曲面双曲守恒律方程的时间连续最近点方法
  • 批准号:
    12301530
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
最近两个冰期旋回东亚夏季风与西风相互作用的模拟研究
  • 批准号:
    42171152
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
季风边缘区:理解最近130ka以来中国半干旱-半湿润过渡带的环境变化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    39.9 万元
  • 项目类别:
季风边缘区:理解最近130ka以来中国半干旱—半湿润过渡带的环境变化
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
最近5000年中国西北干旱区果树利用及环境适应的木材记录研究
  • 批准号:
    42002202
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Workshop on Recent Advances in the Modeling and Simulation of the Mechanics of Nanoscale Materials; Philadelphia, Pennsylvania; August 21-23, 2019
纳米材料力学建模与仿真最新进展研讨会;
  • 批准号:
    1929268
  • 财政年份:
    2019
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Workshop: Recent Advances and Future Research Directions in RF Technologies from MHz to THz; Honolulu, Hawaii, June 8th, 2017.
研讨会:从 MHz 到 THz 射频技术的最新进展和未来研究方向;
  • 批准号:
    1737435
  • 财政年份:
    2017
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Workshop titled "Recent Advances and Challenges in Statistical Methods"
题为“统计方法的最新进展和挑战”的研讨会
  • 批准号:
    9365860
  • 财政年份:
    2016
  • 资助金额:
    $ 1.5万
  • 项目类别:
Workshop: Recent Advances in Computational Methods for Nanoscale Phenomena; Ann Arbor, Michigan; August 29-31, 2016
研讨会:纳米尺度现象计算方法的最新进展;
  • 批准号:
    1622585
  • 财政年份:
    2016
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
HUMAN DISORDERS OF COPPER METABOLISM: RECENT ADVANCES AND MAIN CHALLENGES
人类铜代谢紊乱:最新进展和主要挑战
  • 批准号:
    8459097
  • 财政年份:
    2013
  • 资助金额:
    $ 1.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了