Improving Statistical Convergence in Direct Numerical Simulations by Exploring Large-Scale Structures Organization and Symmetry

通过探索大规模结构组织和对称性来提高直接数值模拟中的统计收敛性

基本信息

  • 批准号:
    1707075
  • 负责人:
  • 金额:
    $ 33.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Computational Fluid Dynamics (CFD) is used to describe, explain, and predict turbulent fluid flow externally around airplanes, rockets, and ground vehicles and internally in engines and building ventilation systems. Such computations can be expensive because of the unsteady structures in the turbulence. This project will focus on developing simulation techniques to make such computations more practical. Outreach activities through ASU community-connect infrastructure will focus on educating high-school students about turbulence and its connection to real-life applications through short tutorials and demonstrations involving advanced visualization of turbulent flows and large-scale organized motions. The goal of this project is to develop the strategies that mitigate the problem associated with the persistence of slow moving coherent structures in certain portions of the flow domain, or locking, during the finite time of numerical simulations. In these situations, the collected flow statistics can be significantly biased by the localized and temporary effect of these structures and cannot reliably represent a long-term system dynamics. The current proposal is devoted to designing simple but efficient strategies that will yield significantly improved convergence of statistics in numerical simulations over a much reduced computational time. These strategies include efficient sampling over multiple realizations and multiple states of the flow during the finite time of the simulations. This will be achieved by designing specific mathematical transformations of the computed flow field at a runtime that can be thought of as disturbances that trigger the state transitions in nature. The symmetries of the system will be explored to design the transformations that (i) amenable to promoting quick transitions into desired unsampled flow states, (ii) mathematically consistent and preserve the governing fluid dynamics equations. In addition to improving statistical convergence, the project seeks to answer the following scientific questions: (i) whether the observation of very long-lived asymmetric flow states in certain symmetric systems, such as jets in crossflow and bluff-body wakes, is an artifact of a similar phenomenon of coherent structure locking and whether the current techniques will yield symmetric average fields, (ii) whether addition of the samples from the newly reconstructed states improve a long-term prediction of the system dynamics by low-order models, such as Proper Orthogonal Decomposition. The research is coupled to the educational plan that includes outreach activities at local Phoenix district high schools, involvement of undergraduates in research, and improving graduate curriculum.
计算流体动力学 (CFD) 用于描述、解释和预测飞机、火箭和地面车辆外部以及发动机和建筑通风系统内部的湍流流体流动。由于湍流中的结构不稳定,这种计算可能会很昂贵。该项目将重点开发模拟技术,使此类计算更加实用。通过亚利桑那州立大学社区连接基础设施开展的外展活动将侧重于通过简短的教程和演示,对高中生进行湍流及其与现实生活应用的联系的教育,涉及湍流的高级可视化和大规模有组织的运动。该项目的目标是制定策略,缓解在数值模拟的有限时间内,与流域某些部分中缓慢移动的相干结构的持久性或锁定相关的问题。在这些情况下,收集到的流量统计数据可能会因这些结构的局部和临时影响而产生显着偏差,并且不能可靠地代表长期的系统动态。当前的提案致力于设计简单但有效的策略,这些策略将在大大减少计算时间的情况下显着提高数值模拟中统计的收敛性。这些策略包括在有限的模拟时间内对流的多个实现和多个状态进行有效采样。这将通过在运行时设计计算流场的特定数学变换来实现,该变换可以被认为是触发自然界状态转换的扰动。将探索系统的对称性来设计变换,(i) 能够促进快速过渡到所需的未采样流动状态,(ii) 数学上一致并保留控制流体动力学方程。 除了提高统计收敛性之外,该项目还试图回答以下科学问题:(i)在某些对称系统中观察到的非常长寿命的不对称流动状态(例如横流中的射流和钝体尾流)是否是一种人为现象相干结构锁定的类似现象以及当前技术是否会产生对称平均场,(ii)添加新重建状态的样本是否可以改善低阶模型对系统动力学的长期预测,例如真正交分解。该研究与教育计划相结合,其中包括凤凰城当地高中的外展活动、本科生参与研究以及改进研究生课程。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cost vs Accuracy: DNS of turbulent flow over a sphere using structured immersed-boundary, unstructured finite-volume, and spectral-element methods
成本与精度:使用结构化浸入边界、非结构化有限体积和谱元方法对球体上的湍流进行 DNS 分析
  • DOI:
    10.1016/j.euromechflu.2023.07.008
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Capuano, Francesco;Beratlis, Nikolaos;Zhang, Fengrui;Peet, Yulia;Squires, Kyle;Balaras, Elias
  • 通讯作者:
    Balaras, Elias
Verification and convergence study of a spectral-element numerical methodology for fluid-structure interaction
流固耦合谱元数值方法的验证和收敛性研究
  • DOI:
    10.1016/j.jcpx.2021.100084
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Xu, YiQin;Peet, Yulia T
  • 通讯作者:
    Peet, Yulia T
Streamwise inhomogeneity of spectra and vertical coherence of turbulent motions in a finite-size wind farm
有限尺寸风电场中的谱流向不均匀性和湍流运动的垂直相干性
  • DOI:
    10.1103/physrevfluids.6.114601
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chatterjee, Tanmoy;Peet, Yulia T.
  • 通讯作者:
    Peet, Yulia T.
Large Eddy Simulation of a Turbulent Wake behind a Body of Revolution at ReD=5000
ReD=5000 时旋转体后面的湍流尾流的大涡模拟
  • DOI:
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang, Fengrui;Peet, Yulia
  • 通讯作者:
    Peet, Yulia
Coherent motions in a turbulent wake of an axisymmetric bluff body
轴对称钝体湍流尾流中的相干运动
  • DOI:
    10.1017/jfm.2023.231
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhang, Fengrui;Peet, Yulia T.
  • 通讯作者:
    Peet, Yulia T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yulia Peet其他文献

Yulia Peet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yulia Peet', 18)}}的其他基金

Effect of Reynolds number on drag reduction: from near-wall cycle to large-scale motions.
雷诺数对减阻的影响:从近壁循环到大规模运动。
  • 批准号:
    2345157
  • 财政年份:
    2024
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Dust Entrainment Processes by Convective Vortices and Localized Turbulent Structures: Experimental and Numerical Study
合作研究:对流涡旋和局部湍流结构的粉尘夹带过程:实验和数值研究
  • 批准号:
    2207115
  • 财政年份:
    2022
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
CAREER: Interaction of Turbulence with Flexible Surfaces: Coherent Structures and Near-Wall Dynamics
职业:湍流与柔性表面的相互作用:相干结构和近壁动力学
  • 批准号:
    1944568
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Continuing Grant
Understanding Bio-Locomotion for Collective Swimming in a Quiet and Disturbed Media
了解在安静和受干扰的介质中集体游泳的生物运动
  • 批准号:
    1762827
  • 财政年份:
    2018
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
Wind Turbine Array Performance Based on Coupling CFD with Doppler Lidar Measurements
基于 CFD 与多普勒激光雷达测量耦合的风力涡轮机阵列性能
  • 批准号:
    1335868
  • 财政年份:
    2013
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
Multidomain and Integrative Capabilities for Large-Scale Systems Simulations with High-Order Methods
使用高阶方法进行大规模系统仿真的多域和集成功能
  • 批准号:
    1250124
  • 财政年份:
    2012
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant

相似国自然基金

基于广义牛顿算法的高维稀疏学习:收敛性分析与统计推断
  • 批准号:
    11801531
  • 批准年份:
    2018
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
面板数据中结构变点的统计推断及其应用研究
  • 批准号:
    11801488
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
蒙特卡罗临界计算的统计误差估计和收敛性判据
  • 批准号:
    11771051
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
概率测度的多项式型集中性质及其统计应用
  • 批准号:
    11601483
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
泛不确定测度空间上的统计学习理论基础研究
  • 批准号:
    11626079
  • 批准年份:
    2016
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Iterative Algorithms for Statistics: From Convergence Rates to Statistical Accuracy
统计迭代算法:从收敛率到统计准确性
  • 批准号:
    2301050
  • 财政年份:
    2022
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Continuing Grant
Convergence of multiple exposures during pregnancy: Effect of wildfires and maternal stressors on birth outcomes among Alaskan women
怀孕期间多重暴露的汇集:野火和母亲压力源对阿拉斯加妇女出生结果的影响
  • 批准号:
    10350520
  • 财政年份:
    2022
  • 资助金额:
    $ 33.12万
  • 项目类别:
Convergence of multiple exposures during pregnancy: Effect of wildfires and maternal stressors on birth outcomes among Alaskan women
怀孕期间多重暴露的汇集:野火和母亲压力源对阿拉斯加妇女出生结果的影响
  • 批准号:
    10552646
  • 财政年份:
    2022
  • 资助金额:
    $ 33.12万
  • 项目类别:
Iterative Algorithms for Statistics: From Convergence Rates to Statistical Accuracy
统计迭代算法:从收敛率到统计准确性
  • 批准号:
    2015454
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Continuing Grant
Anisotropy and non-stationarity in statistical learning, and its influence on the convergence of function approximation
统计学习中的各向异性和非平稳性及其对函数逼近收敛性的影响
  • 批准号:
    2436448
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了