GOALI: Data Driven Remanufacturing: Foundation for Modeling the Impact of Product Middle-of-Life Data on End-of-Life Recovery Decisions
GOALI:数据驱动的再制造:产品中期数据对报废恢复决策影响建模的基础
基本信息
- 批准号:1705621
- 负责人:
- 金额:$ 28.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1705621 (Behdad). The objective of this research is to create a framework for application of middle-of-life product data toward making sustainable product end-of-use recovery and reuse/recycle/etc. decisions. The framework to be developed has three main components: 1) Data collection: the definitions of different types of data that are generated over the middle-of-life phase of the product, particularly from the consumers' usage behavior, and also the types of uncertainty included in the data; 2) Data analytics: the evaluation of future reusability of consumer electronics based on usage profiles; and 3) Decision-making techniques: the identification of the best End of Use (EOU) options (e.g., reuse, recycle, remanufacture, refurbish, and disposal) not only based on product reusability, but also planned-obsolescence and market acceptance. Several application areas will be studied with the help of an industry partner. The focus will be on collecting consumer usage data for charge and discharge usage of lithium-ion laptop batteries and Hard Disk Drives (HDDs) data from home-run and office-run personal computers. This research is targeted to allow information flow to go beyond the first product lifecycle and to feed the information gathered in the first lifecycle to remanufacturing decisions being made at the start of the future lifecycles. Particularly, a prognostic method will be developed that predicts the future reusability of different components of a product, aggregates the data together and further optimizes the appropriate EOU option.The research will include three major activities: 1) Characterizing product usage behavior of consumers to identify general product usage patterns. Data will be collected from surveys and information collected by industry partners on the specific category of electronic devices to quantify the conditions under which certain electronics have been used; 2) Creating a new class of predictive modeling techniques to quantify the future reusability of products based on the lifecycle profile and consumer usage behavior, and developing a set of decision models in the form of prognostic algorithms to determine the best EOU recovery option for used products incorporating the reusability assessment as well as the information from product technical life, market life, design life and physical life; and finally 3) Evaluating the proposed decision-making methods. This research has potential in facilitating the reusability of consumer electronics. These practices are essential for responding to the growing global hunger for electronic devices in newly industrialized countries that lack the sufficient systems, policies and infrastructure for appropriate management and recovery of electronic waste (e-waste). With the help of an industry partner, the project seeks to advance remanufacturing by providing massive and heterogeneous industry data in a challenging e-waste application area.
1705621(贝赫达)。本研究的目的是创建一个应用中期产品数据的框架,以实现可持续的产品最终使用回收和再利用/循环利用等。决定。待开发的框架包含三个主要组成部分: 1)数据收集:产品中期生成的不同类型数据的定义,特别是消费者的使用行为,以及产品的类型。数据中包含的不确定性; 2)数据分析:根据使用情况评估消费电子产品未来的可重复使用性; 3) 决策技术:不仅基于产品的可重复使用性,而且还基于计划报废和市场接受度,确定最佳的使用终止 (EOU) 选项(例如,再利用、回收、再制造、翻新和处置)。将在行业合作伙伴的帮助下研究多个应用领域。重点是收集消费者使用锂离子笔记本电脑电池的充电和放电使用数据以及家用和办公室个人电脑的硬盘驱动器 (HDD) 数据。这项研究的目的是让信息流超越第一个产品生命周期,并将第一个生命周期中收集的信息提供给未来生命周期开始时做出的再制造决策。特别是,将开发一种预测方法,预测产品不同组件未来的可重复使用性,将数据汇总在一起并进一步优化适当的 EOU 选项。该研究将包括三项主要活动: 1)表征消费者的产品使用行为,以识别一般产品使用模式。数据将从行业合作伙伴收集的有关特定电子设备类别的调查和信息中收集,以量化某些电子设备的使用条件; 2) 创建一类新型预测建模技术,根据生命周期概况和消费者使用行为来量化产品未来的可重用性,并以预测算法的形式开发一组决策模型,以确定已用产品的最佳 EOU 回收选项纳入可重用性评估以及产品技术寿命、市场寿命、设计寿命和物理寿命的信息;最后 3)评估所提出的决策方法。这项研究具有促进消费电子产品可重复使用的潜力。这些做法对于应对全球新兴工业化国家对电子设备日益增长的需求至关重要,这些国家缺乏适当管理和回收电子废物的足够系统、政策和基础设施。在行业合作伙伴的帮助下,该项目旨在通过在具有挑战性的电子垃圾应用领域提供大量异构行业数据来推进再制造。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A stochastic optimization framework for planning of waste collection and value recovery operations in smart and sustainable cities
用于规划智能和可持续城市中废物收集和价值回收运营的随机优化框架
- DOI:10.1016/j.wasman.2018.05.019
- 发表时间:2018-08
- 期刊:
- 影响因子:8.1
- 作者:Jatinkumar Shah, Parth;Anagnostopoulos, Theodoros;Zaslavsky, Arkady;Behdad, Sara
- 通讯作者:Behdad, Sara
A Conceptual Framework for Using Videogrammetry in Blockchain Platforms for Food SupplyChain Traceability
在区块链平台中使用视频测量实现食品供应链可追溯性的概念框架
- DOI:
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Gopalakrishnan, Praveen Kumare;Behdad, Sara
- 通讯作者:Behdad, Sara
Consumer decisions to repair mobile phones and manufacturer pricing policies: The concept of value leakage
消费者维修手机的决定和制造商定价政策:价值泄漏的概念
- DOI:10.1016/j.resconrec.2018.01.015
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:Sabbaghi, Mostafa;Behdad, Sara
- 通讯作者:Behdad, Sara
Ubiquitous Life Cycle Assessment (U-LCA): A Proposed Concept for Environmental and Social Impact Assessment of Industry 4.0
- DOI:10.1016/j.mfglet.2017.12.012
- 发表时间:2017-12-01
- 期刊:
- 影响因子:3.9
- 作者:A. Mashhadi;S. Behdad
- 通讯作者:S. Behdad
Moving towards Real-time Data-driven Quality Monitoring: A Case Study of Hard Disk Drives
迈向实时数据驱动的质量监控:硬盘驱动器案例研究
- DOI:10.1016/j.promfg.2018.07.147
- 发表时间:2024-09-14
- 期刊:
- 影响因子:0
- 作者:A. Mashhadi;Willie Cade;S. Behdad
- 通讯作者:S. Behdad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara Behdad其他文献
A Review of Prospects and Opportunities in Disassembly with Human-Robot Collaboration
人机协作拆卸的前景和机遇回顾
- DOI:
10.48550/arxiv.2310.13643 - 发表时间:
2023-10-20 - 期刊:
- 影响因子:0
- 作者:
Meng;Xiao Liang;Boyi Hu;Gulcan Onel;Sara Behdad;Minghui Zheng - 通讯作者:
Minghui Zheng
Sara Behdad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sara Behdad', 18)}}的其他基金
Collaborative Research: DESC: Type 1: Software-Hardware Recycling and Repair Dataset Infrastructure (SHReDI) for Sustainable Computing
合作研究:DESC:类型 1:用于可持续计算的软硬件回收和修复数据集基础设施 (SHReDI)
- 批准号:
2324950 - 财政年份:2023
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
GOALI: Data Driven Remanufacturing: Foundation for Modeling the Impact of Product Middle-of-Life Data on End-of-Life Recovery Decisions
GOALI:数据驱动的再制造:产品中期数据对报废恢复决策影响建模的基础
- 批准号:
2017971 - 财政年份:2020
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
Collaborative Research: Improving Design for Additive Manufacturing through Physically-integrated Design Concepts Generated from Computationally Efficient Graph Coloring Techniques
协作研究:通过计算高效的图形着色技术生成的物理集成设计概念改进增材制造的设计
- 批准号:
2017968 - 财政年份:2020
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
FW-HTF-RL: Collaborative Research: The Future of Remanufacturing: Human-Robot Collaboration for Disassembly of End-of-Use Products
FW-HTF-RL:协作研究:再制造的未来:人机协作拆卸最终产品
- 批准号:
2026276 - 财政年份:2020
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
Collaborative Research: Improving Design for Additive Manufacturing through Physically-integrated Design Concepts Generated from Computationally Efficient Graph Coloring Techniques
协作研究:通过计算高效的图形着色技术生成的物理集成设计概念改进增材制造的设计
- 批准号:
1727190 - 财政年份:2017
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
NSF CAREER Proposal Writing Workshop at the 2014 ASME International Design Engineering Technical Conferences; Buffalo, New York, 19 August 2014
2014年ASME国际设计工程技术会议上的NSF职业提案写作研讨会;
- 批准号:
1445161 - 财政年份:2014
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
GOALI: Remediating E-waste Problems by Considering Consumer Behavior in Design for Multiple Life Cycles and Design for Ease of Return
目标:通过在多生命周期设计和易于退货设计中考虑消费者行为来解决电子垃圾问题
- 批准号:
1435908 - 财政年份:2014
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
相似国自然基金
数据驱动的复杂昂贵高维多目标优化方法研究
- 批准号:62303344
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理模型与数据驱动的探地雷达目标智能识别方法研究
- 批准号:62361015
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于光谱知识数据驱动的临近空间高超声速目标识别方法
- 批准号:62371375
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
领域知识与数据融合驱动的热红外目标跟踪方法研究
- 批准号:62302073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据驱动的进化算法在昂贵大规模多目标优化问题中的应用研究
- 批准号:62372319
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
GOALI: Data-driven design of recycling tolerant aluminum alloys incorporating future material flows
目标:数据驱动的可回收铝合金设计,结合未来的材料流
- 批准号:
2243914 - 财政年份:2023
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
GOALI: Data Driven Remanufacturing: Foundation for Modeling the Impact of Product Middle-of-Life Data on End-of-Life Recovery Decisions
GOALI:数据驱动的再制造:产品中期数据对报废恢复决策影响建模的基础
- 批准号:
2017971 - 财政年份:2020
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
GOALI: Engineering-Driven Modeling of Multi-Resolution Data for Surface Variation Control
GOALI:用于表面变化控制的多分辨率数据的工程驱动建模
- 批准号:
1434411 - 财政年份:2014
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Data-Driven Statistical Prognosis and Service Decision Making for Teleservice Systems
GOALI/协作研究:数据驱动的远程服务系统统计预测和服务决策
- 批准号:
1335454 - 财政年份:2013
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
GOALI: Engineering-Driven Modeling of Multi-Resolution Data for Surface Variation Control
GOALI:用于表面变化控制的多分辨率数据的工程驱动建模
- 批准号:
1265860 - 财政年份:2013
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant