RI: Small: Multi-View Latent Class Discovery and Prediction with a Streamlined Analytics Platform
RI:小型:使用简化的分析平台进行多视图潜在类别发现和预测
基本信息
- 批准号:1718738
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Discovering latent subgroups in a sample is an important problem in many scientific disciplines. Social scientists identify subgroups within a population based on behavioral patterns to examine differential effects of social status. Engineers recognize malfunctions of a manufacturing system based on performance measures to detect design defects. Physicians define subtypes of a disorder on the basis of clinical symptoms to identify associated genetic risk factors. This kind of problem involves two sets of variables: a set of descriptors describing the issue (e.g., behavioral patterns, or symptoms) and a set of moderators or predictors (e.g., social status, or genetic factors). The ability to accurately predict the latent classes (e.g., disease subtypes) from predictors (e.g., genetic risk) in the absence of observed descriptors (e.g., before symptoms are developed) will advance many of these disciplines. This project aims to develop an effective and efficient platform of machine learning algorithms to solve this problem. The team will effectively integrate research and teaching to engage students into the proposed study. Validated methods and software will be broadly disseminated through the project web repository and scientific presentations.This project addresses the latent class discovery and prediction problem by deriving novel and efficient approaches, including multi-view co-clustering, multi-view subspace clustering, multi-objective optimization of co-training, and multi-modal deep learning methods. Parallel and distributed algorithms will be developed to implement and scale up these methods. A streamlined analytics platform will be constructed to maximize the utility of the proposed approaches in real-world applications. The proposed solutions will be evaluated in the analysis of large-scale sensory and behavioral data. By collaborating with domain experts, the project will (1) identify risk factors for problematic human behaviors such as binge drinking; and (2) locate the sensory features most discriminative of gait abnormalities due to neurological disorders such as Parkinson's disease or stroke.
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RT-DAP: A Real-Time Data Analytics Platform for Large-Scale Industrial Process Monitoring and Control
- DOI:10.1109/icii.2018.00015
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Song Han;Tao Gong;M. Nixon;Eric Rotvold;K. Lam;K. Ramamritham
- 通讯作者:Song Han;Tao Gong;M. Nixon;Eric Rotvold;K. Lam;K. Ramamritham
Discrete Graph Structure Learning for Forecasting Multiple Time Series
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Chao Shang;Jie Chen;J. Bi
- 通讯作者:Chao Shang;Jie Chen;J. Bi
Stochastic privacy-preserving methods for nonconvex sparse learning
- DOI:10.1016/j.ins.2022.09.062
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Guannan Liang;Qianqian Tong;Jiahao Ding;Miao Pan;J. Bi
- 通讯作者:Guannan Liang;Qianqian Tong;Jiahao Ding;Miao Pan;J. Bi
Improved Dynamic Graph Learning through Fault-Tolerant Sparsification
- DOI:
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Chun Jiang Zhu;Sabine Storandt;K. Lam;Song Han;J. Bi
- 通讯作者:Chun Jiang Zhu;Sabine Storandt;K. Lam;Song Han;J. Bi
VIGAN: Missing View Imputation with Generative Adversarial Networks.
- DOI:10.1109/bigdata.2017.8257992
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Shang C;Palmer A;Sun J;Chen KS;Lu J;Bi J
- 通讯作者:Bi J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinbo Bi其他文献
Joint modeling of heterogeneous sensing data for depression assessment via multi-task learning
- DOI:
10.1145/3191753 - 发表时间:
2018-03-01 - 期刊:
- 影响因子:0
- 作者:
Jin Lu;Chao Shang;Jinbo Bi - 通讯作者:
Jinbo Bi
Convolutional Neural Network for Automated Mass Segmentation in Mammography
- DOI:
10.1109/iccabs.2018.8542071 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:0
- 作者:
Abdelhafiz, Dina;Nabavi, Sheida;Jinbo Bi - 通讯作者:
Jinbo Bi
Jinbo Bi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinbo Bi', 18)}}的其他基金
AF: Medium: A High Performance Computing Foundation to Whole-Genome Prediction
AF:中:全基因组预测的高性能计算基础
- 批准号:
1514357 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
ABI Innovation: An Integrative Approach to Identifying Highly Heritable Subtypes of Complex Phenotypes
ABI 创新:识别复杂表型的高度遗传亚型的综合方法
- 批准号:
1356655 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
III: Small: Is Imprecise Supervision Useful? Leveraging Ambiguous, Incomplete or Conflicting Data Annotations
三:小:监管不严有用吗?
- 批准号:
1320586 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
小细胞肺癌脑、肾上腺等多器官转移的谱系可塑性机制与干预研究
- 批准号:82330087
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
融合多源异构数据的小微企业经营风险智能识别与应对策略研究
- 批准号:72301188
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多臂小分子受体的设计合成以及在三元有机光伏电池中的应用
- 批准号:52373176
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于NLRP3/Casepase-1/GSDMD小胶质细胞焦亡通路研究多奈哌齐干预桥本甲状腺炎致情绪障碍的作用机制
- 批准号:82300876
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自取向小分子介导水凝胶多尺度各向异性结构的主动调控及其作用机制
- 批准号:22375028
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
RI: Small: Understanding the Inductive Bias Caused by Invariance and Multi Scale in Neural Networks
RI:小:理解神经网络中不变性和多尺度引起的归纳偏差
- 批准号:
2213335 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: RI: III: SHF: Small: Multi-Stakeholder Decision Making: Qualitative Preference Languages, Interactive Reasoning, and Explanation
协作研究:RI:III:SHF:小型:多利益相关者决策:定性偏好语言、交互式推理和解释
- 批准号:
2225824 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: RI: III: SHF: Small: Multi-Stakeholder Decision Making: Qualitative Preference Languages, Interactive Reasoning, and Explanation
协作研究:RI:III:SHF:小型:多利益相关者决策:定性偏好语言、交互式推理和解释
- 批准号:
2225823 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
RI: Small: Cooperative Planning and Learning via Scalable and Learnable Multi-Agent Commitments
RI:小型:通过可扩展和可学习的多代理承诺进行合作规划和学习
- 批准号:
2154904 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NSF-BSF: RI: Small: Efficient Bi- and Multi-Objective Search Algorithms
NSF-BSF:RI:小型:高效的双目标和多目标搜索算法
- 批准号:
2121028 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant