Enhanced Efficiency in Transparent Organic Photovoltaics Using Oxide Plasmonic Nanostructures

使用氧化物等离子体纳米结构提高透明有机光伏的效率

基本信息

  • 批准号:
    1704634
  • 负责人:
  • 金额:
    $ 39.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

This project addresses low-cost photovoltaic (PV) thin film technology that can offer alternative methods to integrating solar energy technology into building envelops. The integration of solar-harvesting components into the building envelope is a transformative route to capturing solar energy for electricity generation while lowering effective solar cell installation costs and improving building energy efficiency. This fundamental research project addresses low-cost thin-film organic photovoltaic technology that is highly transparent in the visible light spectrum enabling integration onto windows, glazing systems, and siding in the building envelope. This project addresses fundamental research to increase the power conversion efficiency of these thin-film transparent systems by increasing absorption of near infrared light using oxide plasmonic nanoparticles embedded in the device. The research will exploit unique optical properties of oxide plasmonic nanoparticles in the near-infrared regime to enhance light absorption and power conversion efficiency. The project will also advance the fundamental understanding of oxide plasmonic nanoparticles, which are promising for a wider range of applications such as thermal management and night vision devices. The educational and outreach component of this project will train graduate and undergraduate researchers to gain a new level of understanding of light and matter at the nanometer scale.Existing transparent organic photovoltaics have low efficiency due to the use of less than 50% of incident near-infrared sunlight. The objective of this project is to identify and understand mechanisms by which localized surface plasmon resonances of oxide plasmonic nanoparticles enhance the power conversion efficiency of transparent organic photovoltaics. With their low-concentrated free electrons and localized surface plasmon resonances in the near-infrared regime, oxide plasmonic nanoparticles will enhance near-infrared light absorption by organic thin films and the photon-current conversion in transparent organic photovoltaics while retaining visual transparency of the devices. The specific research aims include: (1) synthesize and characterize oxide plasmonic nanoparticles that support near-infrared localized surface plasmon resonances, (2) probe electron and energy transfer at the interfaces of organic thin films and oxide plasmonic nanoparticles, and (3) investigate efficiency enhancement of transparent organic photovoltaic devices that incorporate oxide plasmonic nanoparticles. The project will advance fundamental knowledge in the field of optoelectronics of oxide plasmonic nanoparticles and transparent organic photovoltaics.
该项目涉及低成本光伏(PV)薄膜技术,该技术可以提供将太阳能技术集成到建筑围护结构中的替代方法。将太阳能收集组件集成到建筑围护结构中是一种捕获太阳能发电的变革性途径,同时降低有效的太阳能电池安装成本并提高建筑能源效率。该基础研究项目致力于低成本薄膜有机光伏技术,该技术在可见光谱中高度透明,能够集成到窗户、玻璃系统和建筑围护结构的壁板上。该项目致力于基础研究,通过使用嵌入设备中的氧化物等离子体纳米颗粒来增加对近红外光的吸收,从而提高这些薄膜透明系统的功率转换效率。该研究将利用氧化物等离子体纳米颗粒在近红外区域的独特光学特性来提高光吸收和功率转换效率。该项目还将增进对氧化物等离子体纳米颗粒的基本了解,该纳米颗粒有望应用于热管理和夜视设备等更广泛的应用。该项目的教育和推广部分将培训研究生和本科生研究人员,使他们对纳米尺度的光和物质有新的理解。现有的透明有机光伏电池由于使用了不到 50% 的近入射光,效率较低。红外线阳光。该项目的目标是确定和了解氧化物等离子体纳米颗粒的局域表面等离子体共振提高透明有机光伏发电功率转换效率的机制。氧化物等离子体纳米粒子凭借其低浓度自由电子和近红外区域的局域表面等离子体共振,将增强有机薄膜的近红外光吸收和透明有机光伏中的光子电流转换,同时保持器件的视觉透明度。具体研究目标包括:(1)合成和表征支持近红外局域表面等离子体共振的氧化物等离子体纳米粒子,(2)探测有机薄膜和氧化物等离子体纳米粒子界面处的电子和能量转移,以及(3)研究结合氧化物等离子体纳米颗粒的透明有机光伏器件的效率增强。该项目将推进氧化物等离子体纳米粒子和透明有机光伏光电领域的基础知识。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres
使用单个介电纳米球定向调制激子发射
  • DOI:
    10.1002/adma.202007236
  • 发表时间:
    2021-04-09
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Jie Fang;Mingsong Wang;Kan Yao;Tianyi Zhang;A. Krasnok;Taizhi Jiang;Junho Choi;Ethan Kahn;B.
  • 通讯作者:
    B.
Spectrally tunable infrared plasmonic F,Sn:In 2 O 3 nanocrystal cubes
光谱可调红外等离子体 F,Sn:In 2 O 3 纳米晶体立方体
  • DOI:
    10.1063/1.5139050
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cho, Shin Hum;Roccapriore, Kevin M.;Dass, Chandriker Kavir;Ghosh, Sandeep;Choi, Junho;Noh, Jungchul;Reimnitz, Lauren C.;Heo, Sungyeon;Kim, Kihoon;Xie, Karen;et al
  • 通讯作者:
    et al
Syntheses of Colloidal F:In 2 O 3 Cubes: Fluorine-Induced Faceting and Infrared Plasmonic Response
胶体 F:In 2 O 3 立方体的合成:氟诱导的刻面和红外等离子体响应
  • DOI:
    10.1021/acs.chemmater.9b00906
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Cho, Shin Hum;Ghosh, Sandeep;Berkson, Zachariah J.;Hachtel, Jordan A.;Shi, Jianjian;Zhao, Xunhua;Reimnitz, Lauren C.;Dahlman, Clayton J.;Ho, Yujing;Yang, Anni;et al
  • 通讯作者:
    et al
Suppressing material loss in the visible and near-infrared range for functional nanophotonics using bandgap engineering
使用带隙工程抑制功能纳米光子学中可见光和近红外范围内的材料损失
  • DOI:
    10.1038/s41467-020-18793-y
  • 发表时间:
    2020-10-07
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Wang M;Krasnok A;Lepeshov S;Hu G;Jiang T;Fang J;Korgel BA;Alù A;Zheng Y
  • 通讯作者:
    Zheng Y
Tunable Fano Resonance and Plasmon–Exciton Coupling in Single Au Nanotriangles on Monolayer WS 2 at Room Temperature
室温下单层 WS 2 上单金纳米三角形中的可调谐 Fano 共振和等离子激子耦合
  • DOI:
    10.1002/adma.201705779
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Wang, Mingsong;Krasnok, Ale;Zhang, Tianyi;Scarabelli, Leonardo;Liu, He;Wu, Zilong;Liz‐Marzán, Luis M.;Terrones, Mauricio;Alù, Andrea;Zheng, Yuebing
  • 通讯作者:
    Zheng, Yuebing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuebing Zheng其他文献

Active plasmonic devices based on ordered Au nanodisk arrays
基于有序金纳米盘阵列的主动等离子体装置
Digital Assembly of Colloidal Particles for Nanoscale Manufacturing
用于纳米级制造的胶体颗粒的数字组装
Optothermal Manipulation at Fluid Interfaces
流体界面的光热操纵
Room‐Temperature Observation of Near‐Intrinsic Exciton Linewidth in Monolayer WS2 (Adv. Mater. 15/2022)
单层 WS2 中近本征激子线宽的室温观察(Adv. Mater. 15/2022)
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Fang;Kan Yao;Tianyi Zhang;Mingsong Wang;Taizhi Jiang;Suichu Huang;B. Korgel;M. Terrones;A. Alú;Yuebing Zheng
  • 通讯作者:
    Yuebing Zheng
Symmetric and isotropic micro/nanorotors driven by a plane-polarized gaussian laser beam
由平面偏振高斯激光束驱动的对称和各向同性微/纳米转子
  • DOI:
    10.1117/12.2593464
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongru Ding;P. Kollipara;Abhay Kotnala;Zhihan Chen;Yuebing Zheng
  • 通讯作者:
    Yuebing Zheng

Yuebing Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuebing Zheng', 18)}}的其他基金

PFI-TT: Development of a Bubble Printer for Low-cost, Rapid Fabrication of High-Resolution Displays
PFI-TT:开发用于低成本、快速制造高分辨率显示器的气泡打印机
  • 批准号:
    2140985
  • 财政年份:
    2022
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
I-Corps: Bubble printing of colloidal nanoparticles for commercial display and other applications
I-Corps:用于商业显示和其他应用的胶体纳米粒子的气泡印刷
  • 批准号:
    2146871
  • 财政年份:
    2021
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
Laser-Cooling-Driven Opto-Thermophoretic Tweezers
激光冷却驱动光热泳镊子
  • 批准号:
    2001650
  • 财政年份:
    2020
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
Bubble-printing of Colloidal Nanoparticles into Functional Materials and Devices
将胶体纳米粒子气泡印刷成功能材料和器件
  • 批准号:
    1761743
  • 财政年份:
    2018
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于光系统I单层膜的柔性透明生物光电极的构筑及其光转化效率研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
全透明导电薄膜III-V太阳电池及抗辐照特性的研究
  • 批准号:
    61704186
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
用于提升太阳能电池效率的纸基高透明膜的雾度形成机制
  • 批准号:
    31700508
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
基于超薄金属薄膜透明电极的高效大面积聚合物太阳能电池研究
  • 批准号:
    61705054
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
纤维激活蛋白-α(FAP-α)响应的PEG化修饰提高透明质酸纳米粒递药效率机制的研究
  • 批准号:
    81603051
  • 批准年份:
    2016
  • 资助金额:
    17.3 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Transparent High Efficiency High Reliability Ultrasound MEMS Transducer Arrays for Photoacoustic and Ultrasound Applications
适用于光声和超声应用的透明高效高可靠性超声 MEMS 换能器阵列
  • 批准号:
    529364-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Transparent High Efficiency High Reliability Ultrasound MEMS Transducer Arrays for Photoacoustic and Ultrasound Applications
适用于光声和超声应用的透明高效高可靠性超声 MEMS 换能器阵列
  • 批准号:
    529364-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
High efficiency, fine and large area neutron scintillator using transparent composite scintillator
采用透明复合闪烁体的高效、精细、大面积中子闪烁体
  • 批准号:
    18H03468
  • 财政年份:
    2018
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAGER: Transparent electrode device architecture for high efficiency tandem colloidal quantum dot photovoltaics
EAGER:用于高效串联胶体量子点光伏的透明电极器件架构
  • 批准号:
    1744671
  • 财政年份:
    2017
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
Formation of high-performance transparent conductive films by compounding metal and oxide nanomaterials for high efficiency photovoltaics
通过复合金属和氧化物纳米材料形成高性能透明导电薄膜,用于高效光伏发电
  • 批准号:
    17H04721
  • 财政年份:
    2017
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了