III: Medium: Learning Multimodal Knowledge about Entities and Events
III:媒介:学习有关实体和事件的多模态知识
基本信息
- 批准号:1703166
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Everyday knowledge about the world is a necessary condition for intelligent information processing and reasoning. People can read between the lines in text and see beyond what are visible in images because of everyday functional knowledge about how the world works. The primary goal of this research is to develop learning algorithms that can automatically acquire such knowledge, centered around entities and events, from large-scale multimodal web data. Entity knowledge includes a broad range of physical and conceptual knowledge about objects and people, including their attributes, their relative differences, and logical relations among them. Event knowledge focuses on structural knowledge about everyday events in people's lives organized through hierarchical and temporal relations among sub-events and the event participants. Together, the resulting knowledge will be a critical step forward to enable robust AI systems at the intersection between natural language processing and computer vision that can understand and reason about unstructured multimodal information. The potential impact of this research includes interactive assistive systems for the visually-impaired and multimodal educational interfaces. This project investigates multimodal knowledge extraction as a new research paradigm drawing connections between relevant methods in natural language processing such as information extraction, textual entailments, and frame semantics with recent advances in computer vision. One of the critical challenges in commonsense knowledge acquisition is to overcome reporting bias, i.e., people do not state the obvious. Therefore, this project develops new learning algorithms based on a graph-based collective inference that can reason about unspoken knowledge that systematically influences the way people describe the world in language, images, and videos. In addition, this project develops new models for visual semantic parsing and event recognition, which generalize existing studies on activity recognition by specifying various structural components of events such as actors, objects, locations, tools, intents, and goals. The learned knowledge and representation will be validated through several applications including multimodal question answering and grounded language understanding.
关于世界的日常知识是智能信息处理和推理的必要条件。由于了解世界如何运作的日常功能知识,人们可以阅读文本的字里行间,并超越图像中可见的内容。这项研究的主要目标是开发学习算法,能够从大规模多模式网络数据中自动获取以实体和事件为中心的知识。实体知识包括关于物体和人的广泛的物理和概念知识,包括它们的属性、它们的相对差异以及它们之间的逻辑关系。事件知识侧重于通过子事件和事件参与者之间的层次和时间关系组织的有关人们生活中日常事件的结构知识。总之,由此产生的知识将成为在自然语言处理和计算机视觉交叉点实现强大的人工智能系统的关键一步,该系统可以理解和推理非结构化多模态信息。这项研究的潜在影响包括针对视障人士的交互式辅助系统和多模式教育界面。该项目研究多模态知识提取作为一种新的研究范式,将自然语言处理中的相关方法(例如信息提取、文本蕴涵和框架语义)与计算机视觉的最新进展联系起来。获取常识知识的关键挑战之一是克服报告偏见,即人们不陈述显而易见的事实。因此,该项目开发了基于图的集体推理的新学习算法,可以推理出不言而喻的知识,系统地影响人们用语言、图像和视频描述世界的方式。此外,该项目还开发了用于视觉语义解析和事件识别的新模型,通过指定事件的各种结构组件(例如参与者、对象、位置、工具、意图和目标)来概括现有的活动识别研究。所学到的知识和表达将通过多种应用程序进行验证,包括多模式问答和基础语言理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanna Hajishirzi其他文献
OLMo: Accelerating the Science of Language Models
OLMo:加速语言模型科学的发展
- DOI:
10.48550/arxiv.2402.00838 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:0
- 作者:
Dirk Groeneveld;Iz Beltagy;Pete Walsh;Akshita Bhagia;Rodney Kinney;Oyvind Tafjord;A. Jha;Hamish Ivison;Ian Magnusson;Yizhong Wang;Shane Arora;David Atkinson;Russell Authur;Khyathi Raghavi Ch;u;u;Arman Cohan;Jennifer Dumas;Yanai Elazar;Yuling Gu;Jack Hessel;Tushar Khot;William Merrill;Jacob Daniel Morrison;Niklas Muennighoff;Aakanksha Naik;Crystal Nam;Matthew E. Peters;Valentina Pyatkin;Abhilasha Ravich;er;er;Dustin Schwenk;Saurabh Shah;Will Smith;Emma Strubell;Nishant Subramani;Mitchell Wortsman;Pradeep Dasigi;Nathan Lambert;Kyle Richardson;Luke Zettlemoyer;Jesse Dodge;Kyle Lo;Luca Soldaini;Noah A. Smith;Hanna Hajishirzi - 通讯作者:
Hanna Hajishirzi
Husky: A Unified, Open-Source Language Agent for Multi-Step Reasoning
Husky:用于多步推理的统一开源语言代理
- DOI:
- 发表时间:
2024-06-10 - 期刊:
- 影响因子:0
- 作者:
Joongwon Kim;Bhargavi Paranjape;Tushar Khot;Hanna Hajishirzi - 通讯作者:
Hanna Hajishirzi
Getting it Right: Improving Spatial Consistency in Text-to-Image Models
正确做法:提高文本到图像模型的空间一致性
- DOI:
10.48550/arxiv.2404.01197 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:0
- 作者:
Agneet Chatterjee;Gabriela Ben‐Melech Stan;Estelle Aflalo;Sayak Paul;Dhruba Ghosh;Tejas Gokhale;Ludwig Schmidt;Hanna Hajishirzi;Vasudev Lal;Chitta Baral;Yezhou Yang - 通讯作者:
Yezhou Yang
Why are NLP Models Fumbling at Elementary Math? A Survey of Automatic Word Problem Solvers
为什么 NLP 模型在初等数学上表现不佳?
- DOI:
10.48550/arxiv.2212.09561 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Karl Cobbe;V. Kosaraju;Mo Bavarian;Jacob Hilton;Reiichiro Nakano;Chris Hesse;J. Devlin;Ming;Kenton Lee;Robert Geirhos;J. Jacobsen;Richard Michaelis;Wiel;Zemel;Brendel;Matthias Bethge;Felix A. Wichmann;Mohammad Javad Hosseini;Hanna Hajishirzi;Bugeun Kim;Kyung Seo Ki;Donggeon Lee;Rik Koncel;Subhro Roy;Aida Amini;Nate Kushman;Yoav Artzi;Luke Zettlemoyer;Shen;Chao;Keh;Shuai Peng;Ke Yuan;Liangcai Gao;Zhi Tang;Jeffrey Pennington;R. Socher;Matthew E. Peters;Mohit Iyyer Matt Mark Neumann;Christopher Gardner;Kenton Clark;Lee Luke;Piotr Pi˛ekos;M. Malinowski - 通讯作者:
M. Malinowski
Data Engineering for Scaling Language Models to 128K Context
将语言模型扩展到 128K 上下文的数据工程
- DOI:
10.48550/arxiv.2402.10171 - 发表时间:
2024-02-15 - 期刊:
- 影响因子:0
- 作者:
Yao Fu;Rameswar P;a;a;Xinyao Niu;Xiang Yue;Hanna Hajishirzi;Yoon Kim;Hao Peng - 通讯作者:
Hao Peng
Hanna Hajishirzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanna Hajishirzi', 18)}}的其他基金
CAREER: Knowledge-Rich Neural Text Comprehension and Reasoning
职业:知识丰富的神经文本理解和推理
- 批准号:
2044660 - 财政年份:2021
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
IIS: RI: Travel Proposal: Student Travel Support for the 2019 Association for Computational Linguistics Student Research Workshop
IIS:RI:旅行提案:2019 年计算语言学协会学生研究研讨会的学生旅行支持
- 批准号:
1929269 - 财政年份:2019
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RI: Small: Learning to Read, Ground, and Reason in Multimodal Text
RI:小:学习多模态文本中的阅读、基础和推理
- 批准号:
1616112 - 财政年份:2016
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
EAGER: Generating and Understanding Narratives for Dynamic Environments
EAGER:生成和理解动态环境的叙述
- 批准号:
1352249 - 财政年份:2013
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
相似国自然基金
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310114 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310262 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2402311 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310260 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant