A view towards algebraic geometry

对代数几何的看法

基本信息

项目摘要

This award supports participation in a conference entitled "A View Toward Algebraic Geometry" which will be held May 1-5, 2017, at the Harbor View Hotel, on Martha's Vineyard. This meeting brings together leading experts in commutative algebra and algebraic geometry to inform the audience of the major developments from the past few years, to advance new research problems and directions, and to establish innovative connections between different subfields. While all of the speakers were chosen for their role in the recent developments, many were also chosen for their communication skills, and their dedication to developing young researchers in mathematics. The organizers expect that all talks will have an important didactic component, aimed at the junior researchers in the audience. The award will be used to support the participation of 40 junior mathematicians (defined as graduate students, postdocs, and researchers within 5 years of their PhD).The expertise of the speakers covers a broad, but interrelated, range of topics. Nevertheless, explicit algebraic methods and applications of algebraic geometry form a coherent underlying theme. Major themes of the conference include the recent progress on syzygies in algebraic geometry and commutative algebra; rationality and stable rationality of algebraic varieties; and asymptotic stability. These three distinct topics are not disjoint, with many of the speakers and participants working in more than one area. In general, an effort has been made to bring together participants from related, but different, fields, in order to encourage the cross-fertilization of ideas and techniques. Further information is available at the conference's website: https://sites.google.com/site/aviewtowardag/home.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mircea Mustata其他文献

A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
  • DOI:
    10.1090/conm/712/14351
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Yusuke Nakamura
  • 通讯作者:
    Yusuke Nakamura
Test ideals vs. multiplier ideals
测试理想值与乘数理想值
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Ken
  • 通讯作者:
    Ken
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
  • DOI:
    10.1090/conm/712/14351
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Yusuke Nakamura
  • 通讯作者:
    Yusuke Nakamura
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
  • DOI:
    10.1090/conm/712/14351
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Yusuke Nakamura
  • 通讯作者:
    Yusuke Nakamura
Test ideals vs. multiplier ideals
测试理想值与乘数理想值
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Ken
  • 通讯作者:
    Ken

Mircea Mustata的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mircea Mustata', 18)}}的其他基金

Conference: Singularities in Ann Arbor
会议:安娜堡的奇点
  • 批准号:
    2401041
  • 财政年份:
    2024
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
D-modules and invariants of singularities
D 模和奇点不变量
  • 批准号:
    2301463
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Hodge Filtration on Local Cohomology and Minimal Exponents
局部上同调和最小指数的 Hodge 过滤
  • 批准号:
    2001132
  • 财政年份:
    2020
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Facets of Algebraic Geometry
代数几何的各个方面
  • 批准号:
    1904591
  • 财政年份:
    2019
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Hodge-Theoretic Generalizations of Multiplier Ideals
乘数理想的霍奇理论推广
  • 批准号:
    1701622
  • 财政年份:
    2017
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Questions on Singularities and Adjoint Linear Systems
关于奇点和伴随线性系统的问题
  • 批准号:
    1401227
  • 财政年份:
    2014
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Recent Advances in Algebraic Geometry
代数几何的最新进展
  • 批准号:
    1262798
  • 财政年份:
    2013
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
  • 批准号:
    1265256
  • 财政年份:
    2013
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Invariants of Singularities in Zero and Positive Characteristic
零特征和正特征中奇点的不变量
  • 批准号:
    1068190
  • 财政年份:
    2011
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Frobenius Splitting in Algebraic Geometry, Commutative Algebra, and Representation Theory
代数几何、交换代数和表示论中的弗罗贝尼乌斯分裂
  • 批准号:
    0968646
  • 财政年份:
    2010
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant

相似国自然基金

脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
  • 批准号:
    82300777
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Fbxw7缺失促进EGFR突变肺腺癌向肺鳞癌转分化的功能和机制研究
  • 批准号:
    82303039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
深大水库热分层驱动下微塑料垂向迁移特征及其动态影响机制
  • 批准号:
    42377263
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于颅内外同步静息态脑电与多尺度有向脑网络的致痫区定位研究
  • 批准号:
    82371453
  • 批准年份:
    2023
  • 资助金额:
    65 万元
  • 项目类别:
    面上项目

相似海外基金

代数的不変量に着目した閉曲面上のオイラーグラフの良い辺向き付けに関する研究
关注代数不变量的闭曲面欧拉图良好边方向研究
  • 批准号:
    23K03196
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Overdamped Langevin方程式向けの時間積分並列化手法
过阻尼朗之万方程的时间积分并行化方法
  • 批准号:
    22K12063
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic spline geometry: towards algorithmic shape representation
代数样条几何:走向算法形状表示
  • 批准号:
    EP/V012835/1
  • 财政年份:
    2021
  • 资助金额:
    $ 4万
  • 项目类别:
    Research Grant
Structural stability problem of real algebraic maps and its application
实代数映射的结构稳定性问题及其应用
  • 批准号:
    20K03611
  • 财政年份:
    2020
  • 资助金额:
    $ 4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrated study of homogeneous open convex cones and homogeneous Siegel domains
齐次开凸锥和齐次西格尔域的综合研究
  • 批准号:
    19K03520
  • 财政年份:
    2019
  • 资助金额:
    $ 4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了