CIF:Small:Information-theoretic and Computational Thresholds in Statistical Learning
CIF:小:统计学习中的信息理论和计算阈值
基本信息
- 批准号:1714305
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advanced algorithms are an increasingly powerful tool to extract information from vast amount of datathat are gathered over the Internet, by smartphones, sensors networks, or high-throughput scientific studies.As these methods become ubiquitous, it is crucial to understand their full potential. What kind ofinformation can we hope to extract from a certain type of data? Viceversa, how much data shouldwe accumulate in order to be able to infer a certain piece of information? What is the bottleneck that prevents us from extracting more information? These questions have been studied within classical statistics, but modern applications pose entirely new challenges and classical concepts are only partially useful.In particular, computational resources become a crucial bottleneck for modern datasets. In many cases,although the data contain in principle the information of interest, finding it is a needle-in-haystack problem, and cannot be done on human timescales. This project aims at characterizing these fundamental limitations in several central problems, and develop algorithms that can achieve those limits.Both information theory and complexity theory fall short of capturing the fundamental limitations to statistical learning tasks. This project follows a different approach which aims at analyzing broad classes of algorithms, and draw connections between their behavior. More precisely, the project considers three such classes that essentially encompass most algorithms used nowadays: empirical risk minimization;semidefinite programming hierarchies; and local algorithms. The focus is on two concrete statistical estimation problems that are relevant for a number of applications: group synchronization on graphs; non-linear high-dimensional regression and classification. In these and analogous problems, the behavior of seemingly different types of algorithms is often surprisingly similar. Understanding the origin of this similarity and its implications is a key focus of this research.
先进的算法是一种越来越强大的工具,可以通过智能手机,传感器网络或高通量科学研究在互联网上收集大量数据,从而收集大量的数据。由于这些方法变得无处不在,因此了解其全部潜力至关重要。我们希望从某种类型的数据中提取哪种信息? Viceversa,我们应该积累多少数据以推断某些信息?什么是阻止我们提取更多信息的瓶颈?这些问题已经在古典统计数据中进行了研究,但是现代应用程序提出了全新的挑战,经典概念仅部分有用。尤其是,计算资源成为现代数据集的至关重要的瓶颈。在许多情况下,尽管该数据原则上包含感兴趣的信息,但发现它是一条爆炸问题的问题,并且无法在人类时标上完成。该项目的目的是在几个核心问题中表征这些基本局限性,并开发可以达到这些限制的算法。各个信息理论和复杂性理论都无法捕获对统计学习任务的基本局限性。该项目遵循一种不同的方法,旨在分析广泛的算法类别,并在其行为之间建立联系。更确切地说,该项目考虑了三个这样的类别,这些类别本质上涵盖了当今大多数算法:经验风险最小化;半决赛编程层次结构;和本地算法。重点是与许多应用相关的两个具体统计估计问题:图上的组同步;非线性高维回归和分类。 在这些和类似的问题中,看似不同类型的算法的行为通常非常相似。 了解这种相似性及其含义的起源是这项研究的重点。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discussion of: “Nonparametric regression using deep neural networks with ReLU activation function”
- DOI:10.1214/19-aos1910
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:B. Ghorbani;Song Mei;Theodor Misiakiewicz;A. Montanari
- 通讯作者:B. Ghorbani;Song Mei;Theodor Misiakiewicz;A. Montanari
Optimization of the Sherrington--Kirkpatrick Hamiltonian
Sherrington--Kirkpatrick 哈密顿量的优化
- DOI:10.1137/20m132016x
- 发表时间:2021
- 期刊:
- 影响因子:1.6
- 作者:Montanari, Andrea
- 通讯作者:Montanari, Andrea
The threshold for SDP-refutation of random regular NAE-3SAT
- DOI:10.1137/1.9781611975482.140
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Y. Deshpande;A. Montanari;R. O'Donnell;T. Schramm;S. Sen
- 通讯作者:Y. Deshpande;A. Montanari;R. O'Donnell;T. Schramm;S. Sen
Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
两层神经网络的平均场理论:无维数界限和核极限
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Mei, Song;Misiakiewicz, Theodor;Montanari, Andrea
- 通讯作者:Montanari, Andrea
An Instability in Variational Inference for Topic Models
- DOI:
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:B. Ghorbani;H. Javadi;A. Montanari
- 通讯作者:B. Ghorbani;H. Javadi;A. Montanari
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Montanari其他文献
Understanding Inverse Scaling and Emergence in Multitask Representation Learning
了解多任务表示学习中的逆缩放和涌现
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
M. E. Ildiz;Zhe Zhao;Samet Oymak;Xiangyu Chang;Yingcong Li;Christos Thrampoulidis;Lin Chen;Yifei Min;Mikhail Belkin;Aakanksha Chowdhery;Sharan Narang;Jacob Devlin;Maarten Bosma;Gaurav Mishra;Adam Roberts;Liam Collins;Hamed Hassani;M. Soltanolkotabi;Aryan Mokhtari;Sanjay Shakkottai;Provable;Simon S. Du;Wei Hu;S. Kakade;Chelsea Finn;A. Rajeswaran;Deep Ganguli;Danny Hernandez;Liane Lovitt;Amanda Askell;Yu Bai;Anna Chen;Tom Conerly;Nova Dassarma;Dawn Drain;Sheer Nelson El;El Showk;Stanislav Fort;Zac Hatfield;T. Henighan;Scott Johnston;Andy Jones;Nicholas Joseph;Jackson Kernian;Shauna Kravec;Benjamin Mann;Neel Nanda;Kamal Ndousse;Catherine Olsson;D. Amodei;Tom Brown;Jared Ka;Sam McCandlish;Chris Olah;Dario Amodei;Trevor Hastie;Andrea Montanari;Saharon Rosset;Jordan Hoffmann;Sebastian Borgeaud;A. Mensch;Elena Buchatskaya;Trevor Cai;Eliza Rutherford;Diego de;Las Casas;Lisa Anne Hendricks;Johannes Welbl;Aidan Clark;Tom Hennigan;Eric Noland;Katie Millican;George van den Driessche;Bogdan Damoc;Aurelia Guy;Simon Osindero;Karen Si;Erich Elsen;Jack W. Rae;O. Vinyals;Jared Kaplan;B. Chess;R. Child;S. Gray;Alec Radford;Jeffrey Wu;I. R. McKenzie;Alexander Lyzhov;Michael Pieler;Alicia Parrish;Aaron Mueller;Ameya Prabhu;Euan McLean;Aaron Kirtland;Alexis Ross;Alisa Liu;Andrew Gritsevskiy;Daniel Wurgaft;Derik Kauff;Gabriel Recchia;Jiacheng Liu;Joe Cavanagh;Tom Tseng;Xudong Korbak;Yuhui Shen;Zhengping Zhang;Najoung Zhou;Samuel R Kim;Bowman Ethan;Perez;Feng Ruan;Youngtak Sohn - 通讯作者:
Youngtak Sohn
Optimization of random cost functions and statistical physics
- DOI:
- 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
Andrea Montanari - 通讯作者:
Andrea Montanari
Provably Efficient Posterior Sampling for Sparse Linear Regression via Measure Decomposition
通过测量分解进行稀疏线性回归的可证明有效的后验采样
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andrea Montanari;Yuchen Wu - 通讯作者:
Yuchen Wu
The soup of the scholar: food ideology and social order in Song China
学者之汤:中国宋代的饮食意识形态与社会秩序
- DOI:
10.1080/07409710.2020.1748280 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Andrea Montanari - 通讯作者:
Andrea Montanari
Phase diagram of random heteropolymers.
无规杂聚物的相图。
- DOI:
10.1103/physrevlett.92.185509 - 发表时间:
2003 - 期刊:
- 影响因子:8.6
- 作者:
Andrea Montanari;Markus Müller;Marc Mézard - 通讯作者:
Marc Mézard
Andrea Montanari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Montanari', 18)}}的其他基金
CIF: Small: Learning and estimation with rough non-convex objectives: Fundamental limits and efficient algorithms
CIF:小:具有粗略非凸目标的学习和估计:基本限制和高效算法
- 批准号:
2006489 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Workshop: Advances in Asymptotic Probability
研讨会:渐近概率的进展
- 批准号:
1839440 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
BIGDATA: F: Reliable Inference with Big Data: Reproducibility, Data Sharing, Heterogeneity
BIGDATA:F:大数据的可靠推理:再现性、数据共享、异构性
- 批准号:
1741162 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CIF: Small: Optimal Iterative Estimation in Signal Processing, Information Theory and Machine Learning
CIF:小:信号处理、信息论和机器学习中的最优迭代估计
- 批准号:
1319979 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
The game dynamics of social interaction: Algorithms and applications
社交互动的博弈动力学:算法与应用
- 批准号:
0915145 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: New Information Processing Techniques from Statistical Physics and Probability Theory
职业:统计物理学和概率论的新信息处理技术
- 批准号:
0743978 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
蛋白质营养调控橘小实蝇雄虫直肠腺中性信息素合成的分子机制
- 批准号:32372520
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
卫星重力提取中-小尺度陆地水变化的先验信息约束与联合反演研究
- 批准号:
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
传粉榕小蜂基于卵的化学信息调控后代性比的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
卫星重力提取中-小尺度陆地水变化的先验信息约束与联合反演研究
- 批准号:42274110
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
共生真菌调节云南切梢小蠹信息素合成的作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF: Small: Shared Information: Theory and Applications
CIF:小:共享信息:理论与应用
- 批准号:
2310203 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: A New Paradigm for Distributed Information Processing, Simulation and Inference in Networks: The Promise of Law of Small Numbers
合作研究:CIF:小:网络中分布式信息处理、模拟和推理的新范式:小数定律的承诺
- 批准号:
2241057 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CIF: Small: Information-theoretic privacy and security for personalized distributed learning
CIF:小型:个性化分布式学习的信息论隐私和安全
- 批准号:
2139304 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: A New Paradigm for Distributed Information Processing, Simulation and Inference in Networks: The Promise of Law of Small Numbers
合作研究:CIF:小:网络中分布式信息处理、模拟和推理的新范式:小数定律的承诺
- 批准号:
2132815 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: A New Paradigm for Distributed Information Processing, Simulation and Inference in Networks: The Promise of Law of Small Numbers
合作研究:CIF:小:网络中分布式信息处理、模拟和推理的新范式:小数定律的承诺
- 批准号:
2132843 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant