Collaborative Research: Inference for Network Models with Covariates: Leveraging Local Information for Statistically and Computationally Efficient Estimation of Global Parameters
协作研究:具有协变量的网络模型的推理:利用局部信息对全局参数进行统计和计算上的高效估计
基本信息
- 批准号:1713082
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large datasets, which are naturally modeled as a network or graph, arise in almost every field of human endeavor. For example, Facebook is a social network, where nodes are users, with edges corresponding to friendships. In gene networks, nodes represent genes with connections corresponding to their co-expression. In ecological networks, the nodes are animal species, with edges determined according to who eats whom. A major focus of research for network or graph data has been on identifying community membership of the nodes. However, what is often more important for scientific purposes is examining the nature and evolution of edge and membership probabilities, for instance changes in gene features of individuals as a function of some unknown factor, like a disease. The focus on using other measured features of nodes and edges could add, in decisive ways, to the information available from observed edges or interactions between nodes. These could be disease symptoms or test results, or demographic information of users in social networks. Statistical inference in such models, despite its importance, has only just begun to be studied. There are both theoretical and computational challenges, due both to the complexity of models fitted, and the size of data sets. The research will lead to the development of algorithms for fitting models and statistical measures of confidence, with potential applications to many fields. The research is focused on block models for graphs, when node or edge covariates are present. When formulated, these models are no longer block models, but models whose membership probabilities depend upon covariates and whose connection probabilities depend both on block membership and individual covariates. Fitting algorithms involve alternating between fitting block and covariate parameters. Variational (mean field) approaches which effectively lead to semi-parametric model fitting with nK membership "nuisance" parameters, with n representing the number of nodes and K the number of communities, are examined. As these approaches have been found by the PIs to be unstable for large n, the PIs have already begun to investigate the theoretical and practical aspects of divide and conquer algorithms where many subgraphs are independently fit. The PIs will study the statistical properties, both asymptotically and through simulations, and develop practicable and computationally stable methods for large, relatively sparse graphs.
大型数据集自然而然地将其建模为网络或图形,几乎在人类努力的每个领域都出现。例如,Facebook是一个社交网络,节点是用户,边缘与友谊相对应。在基因网络中,节点代表具有与其共表达相对应的连接的基因。在生态网络中,节点是动物物种,其边缘是根据谁吃的人来确定的。 网络或图形数据的主要研究重点是识别节点的社区成员资格。 但是,对于科学目的而言,通常更重要的是检查边缘和成员资格概率的性质和演变,例如个体的基因特征的变化是某些未知因素(例如疾病)的函数。 使用节点和边缘的其他测量特征的重点可以以决定性的方式将观察到的边缘或节点之间的相互作用可用的信息添加到。 这些可能是疾病症状或测试结果,或者是社交网络中用户的人口信息。 尽管有重要性,但在此类模型中的统计推断才刚刚开始研究。 由于拟合的模型的复杂性和数据集的大小,都存在理论和计算挑战。 这项研究将导致开发用于拟合模型和信心统计量度的算法,并在许多领域中使用潜在的应用。当存在节点或边缘协变量时,该研究集中在图形模型上。制定后,这些模型不再是块模型,而是其成员资格概率取决于协变量且连接概率依赖于块成员资格和单个协变量的模型。 拟合算法涉及在拟合块和协变量参数之间交替。 检查了有效导致与NK成员“滋扰”参数的半参数模型拟合的变异(平均场)方法,其中N代表节点的数量和K,k被检查。 由于PIS发现这些方法对于大N不稳定,因此PI已经开始研究鸿沟和征服算法的理论和实际方面,在这些方面和征服了许多子图。 PI将在渐近和模拟上研究统计特性,并为大型,相对稀疏的图开发可行且计算稳定的方法。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Provable Estimation of the Number of Blocks in Block Models
块模型中块数量的可证明估计
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Yan, B.;Sarkar, P.;Cheng, X.
- 通讯作者:Cheng, X.
Covariate Regularized Community Detection in Sparse Graphs
- DOI:10.1080/01621459.2019.1706541
- 发表时间:2016-07
- 期刊:
- 影响因子:3.7
- 作者:Bowei Yan;Purnamrita Sarkar
- 通讯作者:Bowei Yan;Purnamrita Sarkar
When random initializations help: a study of variational inference for community detection
当随机初始化有帮助时:社区检测的变分推理研究
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:6
- 作者:Purnamrita Sarkar, Y. X.
- 通讯作者:Purnamrita Sarkar, Y. X.
Convergence of Gradient EM on Multi-component Mixture of Gaussians
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Bowei Yan;Mingzhang Yin;Purnamrita Sarkar
- 通讯作者:Bowei Yan;Mingzhang Yin;Purnamrita Sarkar
On clustering network-valued data
- DOI:
- 发表时间:2016-06
- 期刊:
- 影响因子:4.6
- 作者:Soumendu Sundar Mukherjee;Purnamrita Sarkar;Lizhen Lin
- 通讯作者:Soumendu Sundar Mukherjee;Purnamrita Sarkar;Lizhen Lin
共 9 条
- 1
- 2
Purnamrita Sarkar其他文献
Hierarchical community detection by recursive bi-partitioning
通过递归双分区进行分层社区检测
- DOI:
- 发表时间:20182018
- 期刊:
- 影响因子:0
- 作者:Tianxi Li;Sharmodeep Bhattacharyya;Purnamrita Sarkar;Peter J. Bickel;E. LevinaTianxi Li;Sharmodeep Bhattacharyya;Purnamrita Sarkar;Peter J. Bickel;E. Levina
- 通讯作者:E. LevinaE. Levina
On the Theoretical Properties of the Network Jackknife
论网络折刀的理论性质
- DOI:
- 发表时间:20202020
- 期刊:
- 影响因子:0
- 作者:Qiaohui Lin;Robert Lunde;Purnamrita SarkarQiaohui Lin;Robert Lunde;Purnamrita Sarkar
- 通讯作者:Purnamrita SarkarPurnamrita Sarkar
Tractable algorithms for proximity search on large graphs
用于大图邻近搜索的易于处理的算法
- DOI:
- 发表时间:20102010
- 期刊:
- 影响因子:0
- 作者:A. Moore;Purnamrita SarkarA. Moore;Purnamrita Sarkar
- 通讯作者:Purnamrita SarkarPurnamrita Sarkar
Higher-Order Correct Multiplier Bootstraps for Count Functionals of Networks
网络计数泛函的高阶正确乘法器自举
- DOI:
- 发表时间:20202020
- 期刊:
- 影响因子:0
- 作者:Qiaohui Lin;Robert Lunde;Purnamrita SarkarQiaohui Lin;Robert Lunde;Purnamrita Sarkar
- 通讯作者:Purnamrita SarkarPurnamrita Sarkar
Subsampling Sparse Graphons Under Minimal Assumptions
最小假设下的稀疏图形子采样
- DOI:
- 发表时间:20192019
- 期刊:
- 影响因子:2.7
- 作者:Robert Lunde;Purnamrita SarkarRobert Lunde;Purnamrita Sarkar
- 通讯作者:Purnamrita SarkarPurnamrita Sarkar
共 12 条
- 1
- 2
- 3
Purnamrita Sarkar的其他基金
Learning with Confidence: Bootstrapping Error Estimates for Stochastic Iterative Algorithms
充满信心地学习:随机迭代算法的自举误差估计
- 批准号:21091552109155
- 财政年份:2021
- 资助金额:$ 16万$ 16万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
基于因果推理的人机物融合系统需求建模与验证研究
- 批准号:62362006
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于行为因果推理的跨网络用户对齐技术研究
- 批准号:62302303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向大规模异构边缘网络的智能低碳协同推理机制研究
- 批准号:62301335
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
多重知识驱动的少样本视频时序规划及推理关键技术研究
- 批准号:62372403
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于模型切分的深度学习推理任务优化放置研究
- 批准号:62302489
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:24123572412357
- 财政年份:2024
- 资助金额:$ 16万$ 16万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:24146882414688
- 财政年份:2024
- 资助金额:$ 16万$ 16万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
- 批准号:23112492311249
- 财政年份:2023
- 资助金额:$ 16万$ 16万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:24155622415562
- 财政年份:2023
- 资助金额:$ 16万$ 16万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: SHF: MEDIUM: General and Scalable Pluggable Type Inference
合作研究:SHF:MEDIUM:通用且可扩展的可插入类型推理
- 批准号:23122632312263
- 财政年份:2023
- 资助金额:$ 16万$ 16万
- 项目类别:Continuing GrantContinuing Grant