Deeper Learning of Data Science (DLDS): Studying Real-world Experiences of Engineering Professionals to Prepare the Future Workforce

数据科学深度学习 (DLDS):研究工程专业人员的真实经验,为未来的劳动力做好准备

基本信息

  • 批准号:
    1712129
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

George Mason University will address the lack of experts trained in the processing, analysis and use of large-scale digital data by conducting a study of how engineers in different fields currently work with this type of data. If properly analyzed and utilized, digital data can lead to useful insights that can help empower people, companies, and government agencies across a range of efforts from education and healthcare, to the design of drones and aircrafts. The knowledge gained from this study will be used to design curricular materials to train future engineers to work with data. In particular, case studies of how data can be used for impact will be generated and tested within a class. These case studies will be available for use by others who want to provide similar training. A broad range of topics will be included in this work and the research study will learn from the perspectives of a diverse range of engineers, with particular emphasis on learning from those who are typically underrepresented in engineering. Data Science has been identified as a critical domain in which trained practitioners are hard to find. The intellectual merit of this project is its study of how engineering professional work on data-intensive projects in order to understand the knowledge, skills, and competencies required for their work. Case studies will be developed to train undergraduate engineering students. Two interrelated theoretical approaches 'Professional Vision' and 'Disciplined Perception' will be leveraged to conceptualize this study with the following research questions: 1) What contextual challenges do data professionals face while conducting data-intensive work and how do they overcome them; 2) What techniques, professional expertise, and domain-specific knowledge do they draw on for their work; 3) What knowledge do they transfer from prior experiences and what new knowledge do they learn of necessity and how do they acquire it? A mixed-methods field study comprised of interviews and surveys will be conducted. Thirty professionals will be interviewed twice over a period of two years (60 interviews) and a survey of 250 participants will be conducted. The research has promise for advancing student learning, by providing overall guidance on data science skills desired by the industry, and by advancing understanding of how professional engineering work has changed.
乔治梅森大学将通过研究不同领域的工程师目前如何处理此类数据来解决缺乏受过大规模数字数据处理、分析和使用培训的专家的问题。 如果正确分析和利用,数字数据可以带来有用的见解,帮助人们、公司和政府机构开展从教育和医疗保健到无人机和飞机设计的一系列工作。从这项研究中获得的知识将用于设计课程材料,以培训未来的工程师处理数据。特别是,将在课堂上生成和测试如何使用数据产生影响的案例研究。这些案例研究可供其他想要提供类似培训的人使用。这项工作将涵盖广​​泛的主题,研究将从不同工程师的角度进行学习,特别强调向那些在工程领域通常代表性不足的工程师学习。 数据科学被认为是一个很难找到训练有素的从业者的关键领域。该项目的智力价值在于研究工程专业人员如何处理数据密集型项目,以了解其工作所需的知识、技能和能力。将开展案例研究来培训工程本科生。将利用“专业愿景”和“纪律感知”两种相互关联的理论方法来概念化本研究,并提出以下研究问题:1)数据专业人员在进行数据密集型工作时面临哪些背景挑战以及他们如何克服这些挑战; 2)他们在工作中利用了哪些技术、专业知识和特定领域的知识; 3)他们从以前的经验中转移了哪些知识,他们需要学习哪些新知识以及他们如何获得这些知识?将进行由访谈和调查组成的混合方法实地研究。 30 名专业人士将在两年内接受两次访谈(60 次访谈),并对 250 名参与者进行调查。该研究有望通过为行业所需的数据科学技能提供全面指导,并加深对专业工程工作如何变化的理解,从而促进学生的学习。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Insights for Curriculum Development: Identifying Emerging Data Science Topics through Analysis of Q&A Communities
Be Constructive: Learning Computational Thinking Using Scratch™ Online Community
具有建设性:使用 Scratch™ 在线社区学习计算思维
Lifelong and lifewide learning for the perpetual development of expertise in engineering
终身、全方位学习,以不断发展工程专业知识
Engineers' Situated Use of Digital Resources to Augment their Workplace Learning Ecology
工程师利用数字资源来增强工作场所学习生态
Keeping Curriculum Relevant: Identifying Longitudinal Shifts in Computer Science Topics through Analysis of Q&A Communities
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aditya Johri其他文献

Representational literacy and participatory learning in large engineering classes using pen-based computing
使用笔式计算在大型工程课程中进行表征素养和参与式学习
Generative Artificial Intelligence in Higher Education: Evidence from an Analysis of Institutional Policies and Guidelines
高等教育中的生成人工智能:来自机构政策和指南分析的证据
  • DOI:
    10.48550/arxiv.2402.01659
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nora McDonald;Aditya Johri;Areej Ali;Aayushi Hingle
  • 通讯作者:
    Aayushi Hingle
Teaching Multidimensional Ethical Decision-Making Through a Role-Play Case Study
通过角色扮演案例研究教授多维道德决策

Aditya Johri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aditya Johri', 18)}}的其他基金

Education DCL: EAGER: An Embedded Case Study Approach for Broadening Students' Mindset for Ethical and Responsible Cybersecurity
教育 DCL:EAGER:一种嵌入式案例研究方法,用于拓宽学生道德和负责任的网络安全思维
  • 批准号:
    2335636
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Impact of Generative Artificial Intelligence (GAI) on Engineering Education Practices
EAGER:生成人工智能 (GAI) 对工程教育实践的影响
  • 批准号:
    2319137
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Workshop: ProVis-EER: Developing Professional Vision into Empirical Practices within Engineering Education Research (EER) though Digital Apprenticeship
研讨会:ProVis-EER:通过数字学徒制将专业愿景发展为工程教育研究 (EER) 中的实证实践
  • 批准号:
    2112775
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative EAGER: Novel Ethnographic Investigations of Engineering Workplaces to Advance Theory and Research Methods for Preparing the Future Workforce
协作 EAGER:对工程工作场所进行新颖的民族志调查,以推进为未来劳动力做好准备的理论和研究方法
  • 批准号:
    1939105
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Workshop: Building an Inclusive Foundation of Engineering Education Research Scholarship for Future Growth
研讨会:为未来发展建立工程教育研究奖学金的包容性基础
  • 批准号:
    1941186
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Situated Algorithmic Thinking: Preparing the Future Computing Workforce for Ethical Decision-Making through Interactive Case Studies
情境算法思维:通过交互式案例研究为未来的计算劳动力进行道德决策做好准备
  • 批准号:
    1937950
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Social Media Participation as Indicator of Actors, Awareness, Attitudes, and Activities Related to STEM Education
EAGER:社交媒体参与度作为与 STEM 教育相关的参与者、意识、态度和活动的指标
  • 批准号:
    1707837
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Technology Adoption during Environmental Jolts: Mobile Phone Use and Digital Services Appropriation during India's Demonetization Crisis
RAPID:合作研究:环境动荡期间的技术采用:印度废钞危机期间的手机使用和数字服务挪用
  • 批准号:
    1733634
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Deep Insights Anytime, Anywhere (DIA2) - Central Resource for Characterizing the TUES Portfolio through Interactive Knowledge Mining and Visualizations
协作研究:随时随地深入洞察 (DIA2) - 通过交互式知识挖掘和可视化来表征 TUES 产品组合的中心资源
  • 批准号:
    1444277
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research (EAGER): Data Ecosystem for Catalyzing Transformative Research in Engineering Education
协作研究(EAGER):促进工程教育变革性研究的数据生态系统
  • 批准号:
    1306373
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

面向慢性胎儿窘迫病理诊断的跨模态医学数据融合学习与模型可解释算法研究
  • 批准号:
    62301205
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
标注数据、部署算力、可解释性约束下的通用多任务学习研究
  • 批准号:
    62306214
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向车联网网络流量数据的多方协作学习风险控制机制研究
  • 批准号:
    62373094
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于本征分析的数据高效学习方法研究
  • 批准号:
    62306085
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据局部缺失下融合张量学习的水导轴承故障诊断方法研究
  • 批准号:
    52305091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
  • 批准号:
    10073285
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Feasibility Studies
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Excellence in Research:Towards Data and Machine Learning Fairness in Smart Mobility
卓越研究:实现智能移动中的数据和机器学习公平
  • 批准号:
    2401655
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了