Questions in Nonlinear Partial Differential Equations
非线性偏微分方程问题
基本信息
- 批准号:1664297
- 负责人:
- 金额:$ 21.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project focuses on the studies of partial differential equations describing fluid flows. These equations play an important role in many areas of science and engineering, and they are at the basis of computer codes used today for modeling fluids, from weather prediction to aircraft and car design, and any number of other applications. Mathematically, the equations are notoriously difficult to solve and even if we use large computers, our computer models are still not as reliable as we would like. It is interesting to compare the situation for example with calculating the stress in complicated rigid structures. The stress calculations are governed by a different set of equations, and in many cases, they can be done with very good precision. One of the reasons is that the underlying equations for stress in rigid structures are much better understood mathematically. The difficulties with fluid calculations are essentially two-fold. First, the solutions are intrinsically complicated, regardless of how good our theory is. Second, our theory is fundamentally incomplete, and therefore we have to deal with a lot of uncertainty in a very difficult computational environment. While there is not much we can do about the first difficulty, the second difficulty can be addressed by improving our mathematical understanding of the equations. The ultimate goal of the research is to understand the behavior of the solutions to the degree that we would be able to design better algorithms for the solutions. The role of good theory in solving differential equations can be well illustrated on a simpler problem of solving equations of motion for planetary systems. In that case, if we use deeper mathematical properties of the equations of motion, we can significantly extend the precision of the algorithms, and make predictions for much longer time-scales. With fluid equations, the situation is more difficult, because ultimately we cannot hope to follow every drop of water when simulating, say, an ocean current, or a fast flow in a large water turbine. In the end, we have to use some averaging, and the right choice of averaging is the most difficult part. A good mathematical knowledge of the theoretical issues surrounding the fluid equations is important for achieving these goals.At a more technical level, the research will focus on the following areas: the generation of small scales and long-time behavior of 2d fluids, the limits of perturbation theory, model equations, and 2-d turbulence and partial damping. By way of example we will describe our program in the study of turbulence. This work will test (at the mathematical level) our best theories of turbulence, in the 2d environment. (The 3d problems are currently out of reach). Currently, the turbulence theory is based on some heuristic assumptions about averaging. Can the heuristics be justified mathematically? At a more technical level, what happens if we remove viscous damping on a few high Fourier modes? The heuristic turbulence theory predicts that this will have hardly any effect on the overall behavior of the fluid (in a turbulent regime). Due to recent advances in mathematical methods, this problem may now be within reach (although it is still difficult). The remaining problems are similarly intricate, however the principal investigator has developed new methods for each of them and it is expected that significant progress will be made.
该项目重点研究描述流体流动的偏微分方程。这些方程在科学和工程的许多领域发挥着重要作用,它们是当今用于流体建模的计算机代码的基础,从天气预报到飞机和汽车设计,以及许多其他应用。在数学上,方程非常难以求解,即使我们使用大型计算机,我们的计算机模型仍然不如我们希望的那么可靠。将这种情况与计算复杂刚性结构中的应力进行比较是很有趣的。应力计算由一组不同的方程控制,在许多情况下,它们可以以非常好的精度完成。原因之一是刚性结构中应力的基本方程在数学上可以更好地理解。流体计算的困难本质上有两个方面。首先,无论我们的理论有多好,解决方案本质上都是复杂的。其次,我们的理论从根本上来说是不完整的,因此我们必须在非常困难的计算环境中处理大量的不确定性。虽然我们对第一个困难无能为力,但第二个困难可以通过提高我们对方程的数学理解来解决。研究的最终目标是了解解决方案的行为,以便我们能够为解决方案设计更好的算法。好的理论在求解微分方程中的作用可以通过求解行星系统运动方程的简单问题得到很好的说明。在这种情况下,如果我们使用运动方程的更深层次的数学特性,我们就可以显着扩展算法的精度,并在更长的时间尺度上进行预测。对于流体方程,情况更加困难,因为最终我们不能希望在模拟洋流或大型水轮机中的快速流动时跟踪每一滴水。最后,我们必须使用一些平均,而正确选择平均是最困难的部分。围绕流体方程的理论问题的良好数学知识对于实现这些目标非常重要。在更技术层面上,研究将集中在以下领域:二维流体的小尺度和长期行为的生成、极限扰动理论、模型方程以及二维湍流和部分阻尼。 我们将通过示例描述我们在湍流研究中的程序。这项工作将在二维环境中(在数学层面上)测试我们最好的湍流理论。 (3d问题目前还无法解决)。 目前,湍流理论基于一些关于平均的启发式假设。启发式可以在数学上得到证明吗?在更技术的层面上,如果我们去除一些高傅立叶模式的粘性阻尼,会发生什么?启发式湍流理论预测,这对流体的整体行为(在湍流状态下)几乎没有任何影响。由于数学方法的最新进展,这个问题现在可能已经触手可及(尽管仍然很困难)。 其余的问题同样复杂,但首席研究员已经为每个问题开发了新方法,预计将取得重大进展。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the De Gregorio modification of the Constantin-Lax-Majda model
关于 Constantin-Lax-Majda 模型的 De Gregorio 修正
- DOI:doi:10.1007/s00205-018-1298-1
- 发表时间:2019-04
- 期刊:
- 影响因子:2.5
- 作者:Jia, Hao;Stewart, Samuel;Sverak, Vladimir
- 通讯作者:Sverak, Vladimir
On stability of weak Navier-Stokes solutions with large L3,∞ initial data.
关于具有大 L3 的弱 Navier-Stokes 解的稳定性,初始数据。
- DOI:10.1080/03605302.2018.1449219
- 发表时间:2018-01
- 期刊:
- 影响因子:1.9
- 作者:Barker, Tobias;Seregin, Gregory;Sverak, Vladimir
- 通讯作者:Sverak, Vladimir
On certain models in the PDE theory of fluid flows
流体流动偏微分方程理论中的某些模型
- DOI:10.5802/jedp.658
- 发表时间:2017-01
- 期刊:
- 影响因子:0
- 作者:Sverak; Vladimir
- 通讯作者:Vladimir
Asymptotics of Stationary Navier Stokes Equations in Higher Dimensions
高维稳态纳维斯托克斯方程的渐近性
- DOI:doi:10.1007/s10114-017-7397-3
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Jia, Hao;Sverak, Vladimir
- 通讯作者:Sverak, Vladimir
Asymptotics of stationary Navier Stokes equations in higher dimensions
高维平稳纳维斯托克斯方程的渐近
- DOI:10.1007/s10114-017-7397-3
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:Jia, Hao;Sverak, Vladimir
- 通讯作者:Sverak, Vladimir
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimir Sverak其他文献
Vladimir Sverak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladimir Sverak', 18)}}的其他基金
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 21.26万 - 项目类别:
Standard Grant
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
- 批准号:
1956092 - 财政年份:2020
- 资助金额:
$ 21.26万 - 项目类别:
Standard Grant
The Twentieth Riviere-Fabes Symposium
第二十届Riviere-Fabes研讨会
- 批准号:
1665006 - 财政年份:2017
- 资助金额:
$ 21.26万 - 项目类别:
Standard Grant
Aspects of well-possedeness and long time behavior for non-linear PDEs
非线性偏微分方程的完备性和长时间行为
- 批准号:
1362467 - 财政年份:2014
- 资助金额:
$ 21.26万 - 项目类别:
Continuing Grant
The Sixteenth Riviere-Fabes Symposium
第十六届Riviere-Fabes研讨会
- 批准号:
1304998 - 财政年份:2013
- 资助金额:
$ 21.26万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1159376 - 财政年份:2012
- 资助金额:
$ 21.26万 - 项目类别:
Standard Grant
Aspects of regularity theory for PDE
PDE 正则性理论的各个方面
- 批准号:
1101428 - 财政年份:2011
- 资助金额:
$ 21.26万 - 项目类别:
Continuing Grant
Problems in Nonlinear Partial Differential Equations
非线性偏微分方程问题
- 批准号:
0800908 - 财政年份:2008
- 资助金额:
$ 21.26万 - 项目类别:
Continuing Grant
Ninth Riviere-Fabes Symposium on Analysis and PDE, April 2006
第九届 Riviere-Fabes 分析和偏微分方程研讨会,2006 年 4 月
- 批准号:
0606843 - 财政年份:2006
- 资助金额:
$ 21.26万 - 项目类别:
Standard Grant
相似国自然基金
部分相干光的二阶及三阶非线性调控研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具非局部分数阶耗散的非线性波动方程的整体适定性和吸引子
- 批准号:12171438
- 批准年份:2021
- 资助金额:51 万元
- 项目类别:面上项目
基于部分状态反馈的复杂非线性不确定系统有限时间控制
- 批准号:
- 批准年份:2019
- 资助金额:59 万元
- 项目类别:面上项目
Banach空间(部分)耗散非线性耦合系统的不变流形及有限维约化
- 批准号:11971317
- 批准年份:2019
- 资助金额:50 万元
- 项目类别:面上项目
非线性部分欠定时序方程组求解及其在飞行器定位中的应用
- 批准号:61703408
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Regularity Questions in Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的正则性问题
- 批准号:
2055244 - 财政年份:2021
- 资助金额:
$ 21.26万 - 项目类别:
Standard Grant
Some Questions in Nonlinear Partial Differential Equations And Nonlinear Functional Analysis
非线性偏微分方程与非线性泛函分析中的几个问题
- 批准号:
7904426 - 财政年份:1979
- 资助金额:
$ 21.26万 - 项目类别:
Standard Grant
Some Questions in Nonlinear Partial Differential Equations And Nonlinear Functional Analysis
非线性偏微分方程与非线性泛函分析中的几个问题
- 批准号:
7506556 - 财政年份:1975
- 资助金额:
$ 21.26万 - 项目类别:
Standard Grant
SOME QUESTIONS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS AND NONLINEAR FUNCTIONAL ANALYSIS
非线性偏微分方程及非线性泛函分析的几个问题
- 批准号:
7354020 - 财政年份:1973
- 资助金额:
$ 21.26万 - 项目类别:
SOME QUESTIONS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS AND NONLINEAR FUCTIONAL ANALYSIS
非线性偏微分方程及非线性泛函分析的几个问题
- 批准号:
7244790 - 财政年份:1972
- 资助金额:
$ 21.26万 - 项目类别: