Using Electrodeposition to Understand the Effects of Composition and Element Segregation on the Physical Properties of Anodes for High Energy-Density Rechargeable Batteries

利用电沉积了解成分和元素偏析对高能量密度可充电电池阳极物理性能的影响

基本信息

  • 批准号:
    1710672
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

PART 1:  NON-TECHNICAL SUMMARYEnergy conversion and storage technology is critical to the operation, maintenance, and development of modern society. The United States now produces over 25 terawatt hours of electricity per year, with the vast majority being provided by non-renewable fuels such as coal, natural gas, and oil. Developing new technologies that are more efficient than existing ones, or technologies that help existing technologies use energy more efficiently, is therefore critical to our future. Over the last few decades, it has become clear that energy storage devices are a key component in a wide range of proposed technologies. The technical requirements vary dramatically based on the specific constraints of each desired application, and as such there is need for a wide range of functional materials, chemistries, and architectures that can be used to build targeted and specific energy storage devices. The research, funded by the Solid State and Materials Chemistry program, focuses on developing non-toxic, inexpensive manufacturing methods for three potential anode materials that could be used in lithium and sodium rechargeable batteries. These materials are known, but how they degrade (and why) is not. Understanding how these materials work and what their key limitations are is the main goal of this study. This is the critical first step toward finding out how to extend the life of these materials and thereby the life of batteries. This Solid State and Materials Chemistry award furthermore enables the principle investigator to conduct outreach activities related to her research involving students at all grade levels as well as the general public and policymakers. For example, the CSU 'Chemistry Club' engages elementary school students, high school students are mentored by the principle investigator and her students in the research lab, the principle investigator gives invited talks about science at local clubs, and she is a board member of the Colorado Clean Energy Cluster, which impacts policy in Colorado directly.PART 2:  TECHNICAL SUMMARYBattery materials that store large amounts of lithium and operate reversibly at the extreme ends of the electrochemical potential range of electrolytes enable high voltage and high energy density battery cells. Among available candidates, elemental alloying materials such antimony and related antimonides possess exceptionally high volumetric capacities and operate at potentials close to the plating of lithium metal, allowing for high theoretical energy density. Nevertheless, they suffer from low reversibility as a result of large changes in their volume during cycling, and poor surface passivation that causes significant degradation of the electrolyte at the anode surface and a subsequent rise in the cell impedance. This work develops direct electrodeposition methods for producing low-cost, high-performance anodes for alkali metal ion (lithium and sodium) rechargeable batteries. The advantage of using electrodeposition is that the composition and morphology of the material can be controlled, and inactive binders are completely eliminated (which greatly aides in the characterization of the functional materials). The research endeavor involves a strategy of synthesizing directly electrodeposited thin films and nanostructures of three key antimonides (nickel, copper, and zinc and animonide) and characterizing them fully to develop a deeper understanding of the lithiation and delithiation reactions that occur as a function of composition, and how these reactions may lead to degradation and ultimately cell failure. Observing the phase formation and elemental composition across films during cycling further aids in the development of a clear model of how these materials work, how they degrade, and ultimately, the development of hypotheses for how to extend cycle life and utility. With this grant the principle investigator also conducts a variety of educational and outreach activities. Besides engaging students at all grade levels in STEM-related activities, she also communicates her findings directly to the general public through invited talks about science at local clubs and as a board member of the Colorado Clean Energy Cluster, which serves to impact policy in Colorado related to the economic development of clean tech companies.
第1部分:非技术摘要转换和存储技术对于现代社会的运营,维护和发展至关重要。现在,美国每年生产超过25吨的电力,绝大多数由煤炭,天然气和石油等不可再生燃料提供。因此,开发比现有技术更有效的新技术,或帮助现有技术更有效地使用能源的技术对我们的未来至关重要。在过去的几十年中,很明显,储能设备是各种建议的技术中的关键组成部分。技术要求根据每种所需应用的特定约束而有很大的变化,因此需要多种功能材料,化学和架构,这些功能材料,化学和架构可用于构建目标和特定的储能设备。这项由固态和材料化学计划资助的研究着重于开发用于三种潜在阳极材料的无毒,廉价的制造方法,可用于锂和钠可充电电池。这些材料是已知的,但是它们是如何降解(为什么)的。了解这些材料的工作原理以及它们的关键局限性是本研究的主要目标。这是找出如何延长这些材料寿命并从而延长电池寿命的关键第一步。此固态和材料化学奖还使原则研究者能够进行与她的研究有关的外展活动,包括各年级的学生以及公共和决策者。例如,CSU“化学俱乐部”吸引了小学生,主要调查员和她的学生在研究实验室中考虑了高中生,主要调查员在当地俱乐部进行了有关科学的邀请演讲,她是科罗拉多州清洁能源集群的董事会成员电解质可实现高压和高能密度电池电池。在可用的候选物中,元素合金材料等锑和相关的抗杀剂的潜力异常高的容量,并且在接近锂金属镀层的电势下运行,从而允许高理论能量密度。然而,由于骑自行车期间的体积发生巨大变化,它们的可逆性低,并且表面钝化较差,导致阳极表面上电解质的显着降解以及随后细胞阻抗的增加。这项工作开发了直接的电沉积方法,用于生产碱金属离子(锂和钠)可充电电池的低成本,高性能阳极。使用电沉积的优势在于,可以控制材料的组成和形态,并且完全消除了无活性的粘合剂(这在功能材料的表征方面大大辅助)。这项研究涉及一项直接综合电极薄膜和纳米结构的策略,这些薄膜和纳米结构(镍,铜,铜,锌和动物氧化物)充分表征它们,以更深入地理解对成分功能以及这些反应的作用以及这些反应可能导致这些细胞失败并最终降解的作用,并最终导致这些反应发生的反应。在骑自行车过程中观察膜之间的相位形成和元素组成,进一步有助于开发这些材料如何工作,它们如何降解以及最终的发展假设的发展,以延长周期寿命和实用性的发展。这项赠款原则研究者还进行了各种教育和外展活动。除了让学生参与与STEM相关的活动中,她还通过邀请在当地俱乐部的科学谈判和科罗拉多州清洁能源集群的董事会成员来直接向公众传达她的发现,该群体会影响科罗拉多州与清洁科技公司的经济发展有关的政策。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design of a Sample Transfer Holder to Enable Air-Free X-ray Photoelectron Spectroscopy
实现无空气 X 射线光电子能谱的样品转移支架的设计
  • DOI:
    10.1021/acs.chemmater.0c01895
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Schneider, Jacob D.;Agocs, Daniel B.;Prieto, Amy L.
  • 通讯作者:
    Prieto, Amy L.
Electrodeposition of pure phase SnSb exhibiting high stability as a sodium-ion battery anode
  • DOI:
    10.1039/c9cc00001a
  • 发表时间:
    2019-06-18
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Ma, Jeffrey;Prieto, Amy L.
  • 通讯作者:
    Prieto, Amy L.
Electrodeposition as a Powerful Tool for the Fabrication and Characterization of Next-Generation Anodes for Sodium Ion Rechargeable Batteries
电沉积作为下一代钠离子充电电池阳极的制造和表征的有力工具
  • DOI:
    10.1149/2.f09211if
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gimble, Nathan J.;Nieto, Kelly;Prieto, Amy L.
  • 通讯作者:
    Prieto, Amy L.
X-ray photoelectron spectroscopy as a probe for understanding the potential-dependent impact of fluoroethylene carbonate on the solid electrolyte interface formation in Na/Cu2Sb batteries
  • DOI:
    10.1016/j.jpowsour.2020.229171
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Nathan J. Gimble;Leslie A. Kraynak;J. Schneider;Maxwell C. Schulze;A. Prieto
  • 通讯作者:
    Nathan J. Gimble;Leslie A. Kraynak;J. Schneider;Maxwell C. Schulze;A. Prieto
The development of strategies for nanoparticle synthesis: Considerations for deepening understanding of inherently complex systems
  • DOI:
    10.1016/j.jssc.2018.12.053
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Jennifer M. Lee;Rebecca C Miller;Lily J. Moloney;A. Prieto
  • 通讯作者:
    Jennifer M. Lee;Rebecca C Miller;Lily J. Moloney;A. Prieto
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy Prieto其他文献

Amy Prieto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy Prieto', 18)}}的其他基金

CAS-Climate: Identifying and Characterizing the Structures and Physical Properties of Sodiated Intermetallics
CAS-气候:识别和表征钠化金属间化合物的结构和物理性质
  • 批准号:
    2211067
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Molecular Level Understanding of Dynamic Speciation to Inform Complex Reaction Pathways and Control the Rational Synthesis of Ternary Semiconductor Nanoparticles
分子水平上对动态形态的理解,以了解复杂的反应途径并控制三元半导体纳米颗粒的合理合成
  • 批准号:
    2109141
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SusChEM: Structural and Mechanistic Insights into the Enhanced Hydrogen Sorption Properties of Metal Hydride Nanoparticles Made via Solution Reactions
SusChEM:通过溶液反应制备的金属氢化物纳米颗粒增强氢吸附性能的结构和机理见解
  • 批准号:
    1508790
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Solid State Chemistry of Inorganic Materials IX
无机材料固态化学九
  • 批准号:
    1405331
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Energy Storage and Conversion- Coupling the Direct Electrodeposition of Crystalline Intermetallics with Targeted Outreach to Elementary Schools
职业:能量存储和转换 - 将晶体金属间化合物的直接电沉积与有针对性的小学推广相结合
  • 批准号:
    0956011
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
REU Site: Making, Measuring, and Building Devices: Chemistry Applied to Real World Problems
REU 网站:制造、测量和构建设备:化学应用于现实世界问题
  • 批准号:
    1004924
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
NER: Li-ion Batteries: Hierarchical Architectures for Reducing Diffusion Lengths
NER:锂离子电池:减少扩散长度的分层架构
  • 批准号:
    0709412
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

晶面择优取向金属锌的电沉积制备与电极性能研究
  • 批准号:
    22379038
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
  • 批准号:
    52371195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
熔盐浸出富硅生物质协同电沉积制备硅碳材料基础研究
  • 批准号:
    52304331
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
胆碱基深共晶体系稀土的溶剂化行为及电沉积机理研究
  • 批准号:
    52304362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双电沉积一体化制备金属—陶瓷复合扩散障/NiCrAlY涂层体系的基础问题研究
  • 批准号:
    52361018
  • 批准年份:
    2023
  • 资助金额:
    32.00 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Electrodeposition joining of metals and carbon fiber-reinforced plastics
金属和碳纤维增强塑料的电沉积连接
  • 批准号:
    23H01727
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NSF-BSF: Physical-Chemical Stabilization of Electrodeposition through Fundamental Interfacial Studies
NSF-BSF:通过基础界面研究实现电沉积的物理化学稳定性
  • 批准号:
    2310353
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Fabrication of bulk nanocrystalline high-entropy alloys by electrodeposition and characterization of their deformation behavior
电沉积块体纳米晶高熵合金的制备及其变形行为表征
  • 批准号:
    23KJ1828
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of extraction-electrodeposition method using novel ionic liquids for high efficiency recovery of platinum group metals
开发利用新型离子液体高效回收铂族金属的萃取-电沉积方法
  • 批准号:
    23H02002
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Decoupling electrodeposition from corrosion for precise tuning of metal deposits in high energy batteries
职业:将电沉积与腐蚀解耦,以精确调节高能电池中的金属沉积
  • 批准号:
    2143677
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了