Using Electrodeposition to Understand the Effects of Composition and Element Segregation on the Physical Properties of Anodes for High Energy-Density Rechargeable Batteries
利用电沉积了解成分和元素偏析对高能量密度可充电电池阳极物理性能的影响
基本信息
- 批准号:1710672
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYEnergy conversion and storage technology is critical to the operation, maintenance, and development of modern society. The United States now produces over 25 terawatt hours of electricity per year, with the vast majority being provided by non-renewable fuels such as coal, natural gas, and oil. Developing new technologies that are more efficient than existing ones, or technologies that help existing technologies use energy more efficiently, is therefore critical to our future. Over the last few decades, it has become clear that energy storage devices are a key component in a wide range of proposed technologies. The technical requirements vary dramatically based on the specific constraints of each desired application, and as such there is need for a wide range of functional materials, chemistries, and architectures that can be used to build targeted and specific energy storage devices. The research, funded by the Solid State and Materials Chemistry program, focuses on developing non-toxic, inexpensive manufacturing methods for three potential anode materials that could be used in lithium and sodium rechargeable batteries. These materials are known, but how they degrade (and why) is not. Understanding how these materials work and what their key limitations are is the main goal of this study. This is the critical first step toward finding out how to extend the life of these materials and thereby the life of batteries. This Solid State and Materials Chemistry award furthermore enables the principle investigator to conduct outreach activities related to her research involving students at all grade levels as well as the general public and policymakers. For example, the CSU 'Chemistry Club' engages elementary school students, high school students are mentored by the principle investigator and her students in the research lab, the principle investigator gives invited talks about science at local clubs, and she is a board member of the Colorado Clean Energy Cluster, which impacts policy in Colorado directly.PART 2: TECHNICAL SUMMARYBattery materials that store large amounts of lithium and operate reversibly at the extreme ends of the electrochemical potential range of electrolytes enable high voltage and high energy density battery cells. Among available candidates, elemental alloying materials such antimony and related antimonides possess exceptionally high volumetric capacities and operate at potentials close to the plating of lithium metal, allowing for high theoretical energy density. Nevertheless, they suffer from low reversibility as a result of large changes in their volume during cycling, and poor surface passivation that causes significant degradation of the electrolyte at the anode surface and a subsequent rise in the cell impedance. This work develops direct electrodeposition methods for producing low-cost, high-performance anodes for alkali metal ion (lithium and sodium) rechargeable batteries. The advantage of using electrodeposition is that the composition and morphology of the material can be controlled, and inactive binders are completely eliminated (which greatly aides in the characterization of the functional materials). The research endeavor involves a strategy of synthesizing directly electrodeposited thin films and nanostructures of three key antimonides (nickel, copper, and zinc and animonide) and characterizing them fully to develop a deeper understanding of the lithiation and delithiation reactions that occur as a function of composition, and how these reactions may lead to degradation and ultimately cell failure. Observing the phase formation and elemental composition across films during cycling further aids in the development of a clear model of how these materials work, how they degrade, and ultimately, the development of hypotheses for how to extend cycle life and utility. With this grant the principle investigator also conducts a variety of educational and outreach activities. Besides engaging students at all grade levels in STEM-related activities, she also communicates her findings directly to the general public through invited talks about science at local clubs and as a board member of the Colorado Clean Energy Cluster, which serves to impact policy in Colorado related to the economic development of clean tech companies.
第 1 部分:非技术摘要能源转换和存储技术对于现代社会的运行、维护和发展至关重要。美国现在每年生产超过 25 太瓦时的电力,其中绝大多数由不可再生燃料提供。因此,在过去的几十年里,开发比现有技术更高效的新技术或帮助现有技术更有效地利用能源的技术对于我们的未来至关重要。很明显,储能装置是各种拟议技术的关键组成部分,根据每种所需应用的具体限制,技术要求差异很大,因此需要各种功能材料和化学物质。 ,以及可用于构建有针对性的特定能量存储设备的架构。该研究由固态和材料化学项目资助,重点是开发三种潜在阳极材料的无毒、廉价的制造方法,这些材料可用于锂和钠可充电电池。材料是已知的,但了解这些材料如何工作以及它们的主要局限性是什么是未知的,这是找出如何延长这些材料寿命的关键第一步。该固态和材料化学奖项使主要研究者能够开展与所有年级的研究生以及公众和政策制定者相关的外展活动,例如科罗拉多州立大学的“化学”。俱乐部'吸引小学生、高中生学生们在研究实验室受到首席研究员和她的学生的指导,首席研究员受邀在当地俱乐部进行有关科学的演讲,她是科罗拉多州清洁能源集群的董事会成员,该集群直接影响科罗拉多州的政策。 第 2 部分:技术概要可储存大量锂并在电解质电化学势范围的极端条件下可逆运行的电池材料可实现高电压和高能量密度的电池单元,其中包括锑等元素合金材料。和相关的锑化物具有极高的体积容量,并且在接近锂金属镀层的电势下工作,从而具有较高的理论能量密度。然而,由于循环过程中体积变化大以及表面钝化差,它们的可逆性较低。这会导致阳极表面电解质显着降解,并随后导致电池阻抗上升。这项工作开发了直接电沉积方法,用于生产低成本、高性能的碱金属离子(锂)阳极。使用电沉积的优点是可以控制材料的成分和形态,并且完全消除非活性粘合剂(这极大地有助于功能材料的表征)。合成直接沉积的三种关键锑化物(镍、铜、锌和锑化物)薄膜和纳米结构的电极,并对它们进行充分表征,以更深入地了解作为成分函数发生的锂化和脱锂反应,以及如何进行这些反应可能导致降解并最终导致电池失效,观察循环过程中薄膜上的相形成和元素组成进一步有助于建立一个关于这些材料如何工作、如何降解的清晰模型,并最终形成关于如何降解的假设。为了延长循环寿命和实用性,首席研究员还开展了各种教育和推广活动,除了让各个年级的学生参与 STEM 相关活动外,她还通过受邀演讲直接向公众传达她的发现。在当地俱乐部从事科学工作并担任该组织的董事会成员科罗拉多州清洁能源集群,旨在影响科罗拉多州与清洁技术公司经济发展相关的政策。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design of a Sample Transfer Holder to Enable Air-Free X-ray Photoelectron Spectroscopy
实现无空气 X 射线光电子能谱的样品转移支架的设计
- DOI:10.1021/acs.chemmater.0c01895
- 发表时间:2020
- 期刊:
- 影响因子:8.6
- 作者:Schneider, Jacob D.;Agocs, Daniel B.;Prieto, Amy L.
- 通讯作者:Prieto, Amy L.
Electrodeposition of pure phase SnSb exhibiting high stability as a sodium-ion battery anode
- DOI:10.1039/c9cc00001a
- 发表时间:2019-06-18
- 期刊:
- 影响因子:4.9
- 作者:Ma, Jeffrey;Prieto, Amy L.
- 通讯作者:Prieto, Amy L.
Electrodeposition as a Powerful Tool for the Fabrication and Characterization of Next-Generation Anodes for Sodium Ion Rechargeable Batteries
电沉积作为下一代钠离子充电电池阳极的制造和表征的有力工具
- DOI:10.1149/2.f09211if
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Gimble, Nathan J.;Nieto, Kelly;Prieto, Amy L.
- 通讯作者:Prieto, Amy L.
X-ray photoelectron spectroscopy as a probe for understanding the potential-dependent impact of fluoroethylene carbonate on the solid electrolyte interface formation in Na/Cu2Sb batteries
- DOI:10.1016/j.jpowsour.2020.229171
- 发表时间:2021-03
- 期刊:
- 影响因子:9.2
- 作者:Nathan J. Gimble;Leslie A. Kraynak;J. Schneider;Maxwell C. Schulze;A. Prieto
- 通讯作者:Nathan J. Gimble;Leslie A. Kraynak;J. Schneider;Maxwell C. Schulze;A. Prieto
The development of strategies for nanoparticle synthesis: Considerations for deepening understanding of inherently complex systems
- DOI:10.1016/j.jssc.2018.12.053
- 发表时间:2019-05
- 期刊:
- 影响因子:3.3
- 作者:Jennifer M. Lee;Rebecca C Miller;Lily J. Moloney;A. Prieto
- 通讯作者:Jennifer M. Lee;Rebecca C Miller;Lily J. Moloney;A. Prieto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Prieto其他文献
Amy Prieto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Prieto', 18)}}的其他基金
CAS-Climate: Identifying and Characterizing the Structures and Physical Properties of Sodiated Intermetallics
CAS-气候:识别和表征钠化金属间化合物的结构和物理性质
- 批准号:
2211067 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Molecular Level Understanding of Dynamic Speciation to Inform Complex Reaction Pathways and Control the Rational Synthesis of Ternary Semiconductor Nanoparticles
分子水平上对动态形态的理解,以了解复杂的反应途径并控制三元半导体纳米颗粒的合理合成
- 批准号:
2109141 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SusChEM: Structural and Mechanistic Insights into the Enhanced Hydrogen Sorption Properties of Metal Hydride Nanoparticles Made via Solution Reactions
SusChEM:通过溶液反应制备的金属氢化物纳米颗粒增强氢吸附性能的结构和机理见解
- 批准号:
1508790 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Solid State Chemistry of Inorganic Materials IX
无机材料固态化学九
- 批准号:
1405331 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Energy Storage and Conversion- Coupling the Direct Electrodeposition of Crystalline Intermetallics with Targeted Outreach to Elementary Schools
职业:能量存储和转换 - 将晶体金属间化合物的直接电沉积与有针对性的小学推广相结合
- 批准号:
0956011 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
REU Site: Making, Measuring, and Building Devices: Chemistry Applied to Real World Problems
REU 网站:制造、测量和构建设备:化学应用于现实世界问题
- 批准号:
1004924 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NER: Li-ion Batteries: Hierarchical Architectures for Reducing Diffusion Lengths
NER:锂离子电池:减少扩散长度的分层架构
- 批准号:
0709412 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
晶面择优取向金属锌的电沉积制备与电极性能研究
- 批准号:22379038
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
磁场与剪切流协同定向电沉积镍基聚多巴胺石墨烯超疏水防污耐蚀涂层及其形成机理研究
- 批准号:52365025
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
分子层沉积精准调控双活性位点原子配位结构和间距及其调控CO2电还原制乙醇性能研究
- 批准号:22302222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
预腐蚀策略调控锌负极界面化学及锌电沉积机制研究
- 批准号:22308066
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
熔盐浸出富硅生物质协同电沉积制备硅碳材料基础研究
- 批准号:52304331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Electrodeposition joining of metals and carbon fiber-reinforced plastics
金属和碳纤维增强塑料的电沉积连接
- 批准号:
23H01727 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NSF-BSF: Physical-Chemical Stabilization of Electrodeposition through Fundamental Interfacial Studies
NSF-BSF:通过基础界面研究实现电沉积的物理化学稳定性
- 批准号:
2310353 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Fabrication of bulk nanocrystalline high-entropy alloys by electrodeposition and characterization of their deformation behavior
电沉积块体纳米晶高熵合金的制备及其变形行为表征
- 批准号:
23KJ1828 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of extraction-electrodeposition method using novel ionic liquids for high efficiency recovery of platinum group metals
开发利用新型离子液体高效回收铂族金属的萃取-电沉积方法
- 批准号:
23H02002 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Decoupling electrodeposition from corrosion for precise tuning of metal deposits in high energy batteries
职业:将电沉积与腐蚀解耦,以精确调节高能电池中的金属沉积
- 批准号:
2143677 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant