Directional Superradiant Light Emission from Epsilon-Near-Zero Plasmonic Nanochannels

Epsilon 近零等离子体纳米通道的定向超辐射光发射

基本信息

  • 批准号:
    1709612
  • 负责人:
  • 金额:
    $ 36.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical description: This project advances understanding about how interactions between nanoscale materials and light can be manipulated, leading to optical materials with unique properties and functionalities. The research team utilizes experimental and computational approaches to help realize new materials and structures that enable controlled light emission for use in next generation energy efficient electronics, such as nanoscale lasers, as well as advanced optical communications and sensing technologies. The project supports undergraduate and graduate student involvement in research as a means of encouraging pursuit of advanced study and research careers in nanophotonics. The team extends the impact of this research to introduce concepts in quantum science and electromagnetism to middle school, high school and undergraduate students. The latter include activities focused on photonics during Physics Days at the University of Memphis, and the Research Experiences for Undergraduates programs at the Nebraska Center for Materials and Nanoscience. Further, the investigators leverage their research findings to implement an online teaching resource encompassing a broad range of topics addressing electromagnetic materials for use in undergraduate and graduate teaching.Technical description: Recent advances in nanofabrication techniques have enabled the integration of nanomaterials into plasmonic nanocavities with sizes much smaller than the diffraction limit, paving the way for optical studies and control of light-matter interaction at the nanoscale. Current research strategies typically require accurate positioning of quantum emitters at nanocavity-localized hotspots, to benefit from increased photonic density of states. In this project, the research team employs both experimental and computational approaches to advance fundamental knowledge of the directional, superradiant coherent light emission from a collection of quantum emitters embedded in unique epsilon-near-zero plasmonic nanochannels. The in-phase plasmonic field confined in an epsilon-near-zero nanochannel provides a path to overcome the localized hotspot dependence and allows emitters to radiate coherently and collaboratively over long distances. The team elucidates fundamental properties of coherent light emission by addressing Dicke superradiance, the Purcell effect and Förster resonance energy transfer in a plasmonic epsilon-near-zero material. In so doing, the team fills gaps in foundational physics understanding, allowing the creation of new nanostructures with unique properties and functionalities. This new knowledge is expected to lead to novel on-chip optical components and coherent light sources for nanophotonic applications, quantum information processing and sensing.
非技术描述:该项目促进了解如何操纵纳米级材料与光之间的相互作用,从而导致具有独特属性和功能的光学材料。研究小组利用实验和计算方法来帮助实现新的材料和结构,以实现受控的光发射,以便在下一代节能电子设备中使用,例如纳米级激光器,以及先进的光学通信和传感器技术。该项目支持本科生和研究生参与研究,以鼓励追求纳米光子学的高级研究和研究职业。该小组扩展了这项研究的影响,以向中学,高中和本科生介绍量子科学和电磁概念。后者包括孟菲斯大学物理学时期的光子学活动,以及内布拉斯加州材料和纳米科学中心的大学生计划的研究经验。此外,调查人员利用其研究结果来实施在线教学资源,其中包含广泛的主题,这些主题涉及用于本科和研究生教学的电子材料,纳米化技术的最新进展使纳米型技术的进步使纳米材料中的纳米材料的整合到了较小的葡萄球菌纳米范围,该纳米材料的范围是较小的,而小于较小的纳米型纳米腔,而不是范围的范围,并且在范围内的范围较小,而差异则是差异,而不是传播范围的范围。纳米级。当前的研究策略通常需要将量子发射器准确地定位在纳米腔内定位的热点处,以使状态的光子密度增加受益。在这个项目中,研究团队员工既可以通过嵌入独特的Epsilon-Near-Near-Near-Zero plasmamonic纳米渠道的量子发射器收集的方向性,超级相干发射的基本知识来促进实验和计算方法。限制在Epsilon-Near-near-Zero纳米渠道中的同相内浆液场为克服局部热点依赖性提供了一条路径,并允许发射器在长距离内相干地辐射。该团队通过解决Dicke上级,Purcell效应和Försterresonance Energy传递的基本特性来阐明相干光发射的基本特性。在这样做时,团队填补了基础物理学理解的空白,从而可以创建具有独特属性和功能的新纳米结构。预计这种新知识将导致新型的片上光学组件和纳米光应用,量子信息处理和感官的相干光源。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Periodic Nanohole Arrays with Enhanced Lasing and Spontaneous Emissions for Low-Cost Plasmonic Devices
用于低成本等离子器件的具有增强激光和自发发射功能的周期性纳米孔阵列
  • DOI:
    10.1021/acsanm.1c03796
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Krause, Bryson;Pham, Minh T.;Luong, Hoang M.;Nguyen, Tho D.;Hoang, Thang B.
  • 通讯作者:
    Hoang, Thang B.
Self-Induced Passive Nonreciprocal Transmission by Nonlinear Bifacial Dielectric Metasurfaces
  • DOI:
    10.1103/physrevapplied.13.054056
  • 发表时间:
    2020-05-22
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Jin, Boyuan;Argyropoulos, Christos
  • 通讯作者:
    Argyropoulos, Christos
Nonlinear Strong Coupling by Second‐Harmonic Generation Enhancement in Plasmonic Nanopatch Antennas
  • DOI:
    10.1002/adom.202200510
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    9
  • 作者:
    B. Krause;Dhananjay Mishra;Jiyang Chen;C. Argyropoulos;T. Hoang
  • 通讯作者:
    B. Krause;Dhananjay Mishra;Jiyang Chen;C. Argyropoulos;T. Hoang
Epsilon-near-zero plasmonic waveguides to enhance nonlinear coherent light-matter interactions
  • DOI:
    10.1117/12.2320011
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Li;C. Argyropoulos
  • 通讯作者:
    Ying Li;C. Argyropoulos
Exceptional points and spectral singularities in active epsilon-near-zero plasmonic waveguides
  • DOI:
    10.1103/physrevb.99.075413
  • 发表时间:
    2019-02-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Li, Ying;Argyropoulos, Christos
  • 通讯作者:
    Argyropoulos, Christos
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thang Hoang其他文献

Localisation using LiDAR and Camera
使用 LiDAR 和相机进行定位
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thang Hoang;V. Berntsson
  • 通讯作者:
    V. Berntsson
Multi-Model Long Short-Term Memory Network for Gait Recognition Using Window-Based Data Segment
  • DOI:
    10.1109/access.2021.3056880
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Tran, Lam;Thang Hoang;Choi, Deokjai
  • 通讯作者:
    Choi, Deokjai
Client-Efficient Online-Offline Private Information Retrieval
客户高效的线上线下隐私信息检索
Use of Marfey's reagent to quantitate racemization upon anchoring of amino acids to solid supports for peptide synthesis.
使用 Marfey 试剂定量将氨基酸锚定到固相支持物上进行肽合成时的外消旋作用。
  • DOI:
    10.1016/0003-2697(92)90229-z
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    J. G. Adamson;Thang Hoang;A. Crivici;Gilles Lajoie
  • 通讯作者:
    Gilles Lajoie
ZAC: Efficient Zero-Knowledge Dynamic Universal Accumulator and Application to Zero-Knowledge Elementary Database
ZAC:高效的零知识动态通用累加器及其在零知识基础数据库中的应用

Thang Hoang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thang Hoang', 18)}}的其他基金

Travel: NSF Student Travel Grant for 2024 IEEE Symposium on Security and Privacy (IEEE S&P 2024)
旅行:2024 年 IEEE 安全与隐私研讨会 (IEEE S
  • 批准号:
    2419095
  • 财政年份:
    2024
  • 资助金额:
    $ 36.12万
  • 项目类别:
    Standard Grant

相似国自然基金

协同超级电容储能与光伏工作点调控的虚拟同步发电机控制策略及优化
  • 批准号:
    52107204
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
协同超级电容储能与光伏工作点调控的虚拟同步发电机控制策略及优化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
同纬度不同海拔地区超级杂交稻产量差异的温光机制及密、肥调控效应研究
  • 批准号:
    31971844
  • 批准年份:
    2019
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
用于一体化光伏储能的激光直写微纳结构超级电容
  • 批准号:
    11974247
  • 批准年份:
    2019
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
金属有机框架衍生物构筑的光伏储能器件
  • 批准号:
    21875041
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Test study of stimulated-superradiant FEL toward extreme high field amplitudes of radiation
受激超辐射FEL对极高辐射场幅值的测试研究
  • 批准号:
    23K17306
  • 财政年份:
    2023
  • 资助金额:
    $ 36.12万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Applications of Superradiant Lasers for Inertial Sensing
超辐射激光器在惯性传感中的应用
  • 批准号:
    2207963
  • 财政年份:
    2022
  • 资助金额:
    $ 36.12万
  • 项目类别:
    Standard Grant
Designing Bright and Fast Fluorophores with Large Stokes' Shifts Based on Superradiant Molecular J-Aggregates
基于超辐射分子 J 聚集体设计明亮、快速的具有大斯托克斯位移的荧光团
  • 批准号:
    2108357
  • 财政年份:
    2021
  • 资助金额:
    $ 36.12万
  • 项目类别:
    Standard Grant
Cavity-Enhanced Superradiant Phenomena in Optically Trapped Atomic Ytterbium
光俘获原子镱中的腔增强超辐射现象
  • 批准号:
    0101216
  • 财政年份:
    2001
  • 资助金额:
    $ 36.12万
  • 项目类别:
    Continuing Grant
Superradiant amplification in an underdense plasma
低密度等离子体中的超辐射放大
  • 批准号:
    5239230
  • 财政年份:
    2000
  • 资助金额:
    $ 36.12万
  • 项目类别:
    Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了