CRII: SHF: Design and Analysis of Processing-Near-Memory Enabled GPU Architecture
CRII:SHF:支持近内存处理的 GPU 架构的设计和分析
基本信息
- 批准号:1657336
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphics Processing Units (GPUs) are becoming an inevitable part of every computing system because of their ability to enable orders of magnitude faster and energy-efficient execution. However, the necessary and continuous scaling of GPUs in terms of performance and energy efficiency will not be an easy task. Prior works have shown that two biggest impediments towards this scaling are the limited memory bandwidth and the excessive data movement across different levels of the memory hierarchy. In order to alleviate these two issues, die-stacking technology is gaining momentum in the realm of high-performance energy-efficient GPU computing. This technology not only enables very high memory bandwidth for better performance but also provides support for processing-near-memory (PNM) to reduce data movement, access latencies, and energy consumption. Although these technologies seem promising, the architectural support and execution models for PNM-based GPUs and their implications on the entire system design have largely been unexplored. This project takes a fresh look at the design and execution model of a PNM-enabled GPU, which consists of multiple memory stacks and each memory stack incorporates a 3D-stacked logic layer that can consist of multiple PNM GPU cores and other uncore components. Considering that GPUs are becoming an inevitable part of every computing system ranging from warehouse-scale computers to wearable devices, the insights resulting from this research can have a long-term positive impact on the GPU-based computing. The findings of this research will be incorporated to existing and new undergraduate and graduate courses, which will directly help in educating and training students, including women and students from diverse backgrounds and minority groups.First, a detailed design space exploration will be performed, which will involve the study of the impact and interactions of different design choices related to PNM cores (e.g., register file, SIMD width, pipeline components, warp occupancy), uncore components at the logic layer (e.g., caches) and stacked memory (e.g., number of stacked memories). Second, a computation distribution framework (CDF) will be developed that will answer: a) when is it preferable to map computations to PNM cores, b) which PNM cores and computations they should be?, and c) how can we effectively take advantage of both PNM and regular GPU cores? The CDF will leverage different static and runtime strategies to address many of such similar questions to push the envelopes of energy efficiency and performance even further. The proposed research components will be evaluated via a wide-range of GPGPU applications. If successful, the findings of this research would better equip PNM-enabled GPUs to effectively alleviate the two major bottlenecks: memory bandwidth and energy.
图形处理单元 (GPU) 正在成为每个计算系统不可避免的一部分,因为它们能够实现速度提高和节能的数量级。但是,GPU 在性能和能源效率方面的必要和持续扩展不会得到满足。先前的工作表明,这种扩展的两个最大障碍是有限的内存带宽和跨不同级别的内存层次结构的过多数据移动,为了缓解这两个问题,芯片堆叠技术正在取得进展。该技术不仅能够实现极高的内存带宽以实现更好的性能,而且还提供对近内存处理 (PNM) 的支持,以减少数据移动、访问延迟和能耗。尽管这些技术看起来很有前途,但基于 PNM 的 GPU 的架构支持和执行模型及其对整个系统设计的影响在很大程度上尚未得到探索。该项目重新审视了 GPU 的设计和执行模型。支持 PNM 的 GPU,由多个内存堆栈组成,每个内存堆栈都包含一个 3D 堆栈逻辑层,该逻辑层可以由多个 PNM GPU 核心和其他非核心组件组成 考虑到 GPU 是每个计算系统中不可避免的一部分,从仓库到将计算机扩展到可穿戴设备,这项研究得出的见解可以对基于 GPU 的计算产生长期的积极影响。这项研究的结果将被纳入现有和新的本科生和研究生课程中。直接帮助教育和培训学生,包括来自不同背景和少数群体的女性和学生。首先,将进行详细的设计空间探索,其中将涉及与 PNM 核心相关的不同设计选择(例如、寄存器文件、SIMD 宽度、流水线组件、扭曲占用)、逻辑层的非核心组件(例如缓存)和堆栈内存(例如堆栈内存的数量)。将开发一个计算分布框架(CDF),它将回答:a)什么时候最好将计算映射到 PNM 核心,b)它们应该是哪些 PNM 核心和计算?以及 c)我们如何有效地利用两者PNM 和常规 GPU 核心? CDF 将利用不同的静态和运行时策略来解决许多此类类似问题,以进一步突破能源效率和性能的极限。如果成功的话,这项研究的结果将更好地装备支持 PNM 的 GPU,以有效缓解内存带宽和能耗这两个主要瓶颈。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Address-stride assisted approximate load value prediction in GPUs
GPU 中的地址跨距辅助近似负载值预测
- DOI:10.1145/3330345.3330362
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Wang, Haonan;Ibrahim, Mohamed;Mittal, Sparsh;Jog, Adwait
- 通讯作者:Jog, Adwait
Design and Analysis of Soft-Error Resilience Mechanisms for GPU Register File
GPU寄存器文件软错误恢复机制的设计与分析
- DOI:10.1109/vlsid.2017.14
- 发表时间:2024-09-13
- 期刊:
- 影响因子:0
- 作者:Sparsh Mittal;Haonan Wang;Adwait Jog;J. Vetter
- 通讯作者:J. Vetter
Efficient and Fair Multi-programming in GPUs via Effective Bandwidth Management
- DOI:10.1109/hpca.2018.00030
- 发表时间:2018-02-01
- 期刊:
- 影响因子:0
- 作者:Haonan Wang;Fan Luo;M. Ibrahim;Onur Kayiran;Adwait Jog
- 通讯作者:Adwait Jog
Architectural Support for Efficient Large-Scale Automata Processing
高效大规模自动机处理的架构支持
- DOI:10.1109/micro.2018.00078
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:Liu, Hongyuan;Ibrahim, Mohamed;Kayiran, Onur;Pai, Sreepathi;Jog, Adwait
- 通讯作者:Jog, Adwait
Opportunistic computing in GPU architectures
GPU 架构中的机会计算
- DOI:10.1145/3307650.3322212
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Pattnaik, Ashutosh;Tang, Xulong;Kayiran, Onur;Jog, Adwait;Mishra, Asit;Kandemir, Mahmut T.;Sivasubramaniam, Anand;Das, Chita R.
- 通讯作者:Das, Chita R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adwait Jog其他文献
Fault Site Pruning for Practical Reliability Analysis of GPGPU Applications
用于 GPGPU 应用实际可靠性分析的故障站点修剪
- DOI:
10.1109/micro.2018.00066 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:0
- 作者:
Bin Nie;Lishan Yang;Adwait Jog;E. Smirni - 通讯作者:
E. Smirni
A Regression-based Model for End-to-End Latency Prediction for DNN Execution on GPUs
基于回归的模型,用于 GPU 上 DNN 执行的端到端延迟预测
- DOI:
10.1109/ispass57527.2023.00047 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:0
- 作者:
Y. Li;Yifan Sun;Adwait Jog - 通讯作者:
Adwait Jog
Quantifying Data Locality in Dynamic Parallelism in GPUs
量化 GPU 动态并行性中的数据局部性
- DOI:
10.1145/3309697.3331473 - 发表时间:
2019-06-20 - 期刊:
- 影响因子:0
- 作者:
Xulong Tang;Ashutosh Pattnaik;Onur Kayiran;Adwait Jog;M. K;emir;emir;C. Das - 通讯作者:
C. Das
μC-States: Fine-grained GPU datapath power management
μC-States:细粒度 GPU 数据路径电源管理
- DOI:
10.1145/2967938.2967941 - 发表时间:
2016-09-11 - 期刊:
- 影响因子:0
- 作者:
Onur Kayiran;Adwait Jog;Ashutosh Pattnaik;Rachata Ausavarungnirun;Xulong Tang;M. K;emir;emir;G. Loh;O. - 通讯作者:
O.
Scheduling techniques for GPU architectures with processing-in-memory capabilities
具有内存处理功能的 GPU 架构的调度技术
- DOI:
10.1145/2967938.2967940 - 发表时间:
2016-09-11 - 期刊:
- 影响因子:0
- 作者:
Ashutosh Pattnaik;Xulong Tang;Adwait Jog;Onur Kayiran;Asit K. Mishra;M. K;emir;emir;O. Mutlu;C. Das - 通讯作者:
C. Das
Adwait Jog的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adwait Jog', 18)}}的其他基金
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Addressing Scalability Challenges in Designing Next-generation GPU-Based Heterogeneous Architectures
职业:解决设计下一代基于 GPU 的异构架构时的可扩展性挑战
- 批准号:
2316694 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CAREER: Addressing Scalability Challenges in Designing Next-generation GPU-Based Heterogeneous Architectures
职业:解决设计下一代基于 GPU 的异构架构时的可扩展性挑战
- 批准号:
1750667 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
SHF: Small: Enabling and Analyzing Accuracy-aware Reliable GPU Computing
SHF:小型:启用和分析精度感知的可靠 GPU 计算
- 批准号:
1717532 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超高频光声频谱渐进式调制下的光声显微成像轴向分辨率提升研究
- 批准号:62265011
- 批准年份:2022
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
CRII: SHF: Efficiency-Aware Robust Implementation of Neural Networks with Algorithm-Hardware Co-design
CRII:SHF:具有算法硬件协同设计的神经网络的效率感知稳健实现
- 批准号:
1947826 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SHF: Ultra-fast Simulation and Automated Design of Silicon Photonics Devices
CRII:SHF:硅光子器件的超快速仿真和自动化设计
- 批准号:
1849965 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SHF Software and Hardware Architecture Co-Design for Deep Learning on Mobile Device
CRII:移动设备深度学习的SHF软硬件架构协同设计
- 批准号:
1850045 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SHF: Leveraging Synthesis for Dynamic Design Space Analysis
CRII:SHF:利用综合进行动态设计空间分析
- 批准号:
1755890 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SHF: Design, Extraction, and Optimization of Multi-Chip Fan-Out Wafer-Level-Packaging for Low-Power Heterogeneous Systems
CRII:SHF:低功耗异构系统多芯片扇出晶圆级封装的设计、提取和优化
- 批准号:
1755981 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant