CRII: CIF: Models, Theories and Algorithms for Timeliness Optimization in Information-update Systems

CRII:CIF:信息更新系统时效性优化的模型、理论和算法

基本信息

  • 批准号:
    1657162
  • 负责人:
  • 金额:
    $ 17.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-02-15 至 2021-01-31
  • 项目状态:
    已结题

项目摘要

The last two decades have witnessed significant advances in the development of theoretical foundations and control mechanisms for network resource allocation. These newly developed theories and mechanisms have substantially improved network performance in terms of throughput and delay. However, optimizing throughput and delay is insufficient for networked systems that require real-time information update. The state-of-the-art theoretical foundations need to be largely expanded to integrate timeliness of information into the design of network control mechanisms. The research on timeliness optimization is still at its nascent stage. New theoretical results and practical solutions coming out of this project are expected to have a significant impact not only on information theory and networking community, but also on databases and machine learning community. This project will focus on providing research experiences to undergraduate and K-12 students, recruiting and advising underrepresented students, and engaging in curriculum development activities. The goal of this research is to develop new models, theories, and algorithms for optimizing timeliness performance in information-update systems. A recently proposed metric called age-of-information or simply "age", will be employed as a key metric to study timeliness performance. First, this research investigates the impact of channel coding on timeliness of information transmitted over a lossy channel. Second, this research studies the problem of age minimization under a bounded staleness constraint in a new setting where information can be partitioned into multiple disjoint units with partial updates. Finally, this research introduces a new Pull model where the destination sends queries to the sources to pull information of interest and proposes using replication schemes to optimize timeliness performance.
过去二十年见证了网络资源分配的理论基础和控制机制的发展取得了重大进展。这些新发展的理论和机制在吞吐量和延迟方面显着提高了网络性能。然而,对于需要实时信息更新的网络系统来说,优化吞吐量和延迟是不够的。需要大力扩展最先进的理论基础,以将信息的及时性整合到网络控制机制的设计中。时效性优化的研究仍处于起步阶段。该项目产生的新理论成果和实际解决方案预计不仅会对信息论和网络社区产生重大影响,而且还会对数据库和机器学习社区产生重大影响。该项目将侧重于为本科生和 K-12 学生提供研究经验、招募代表性不足的学生并为其提供建议,以及参与课程开发活动。本研究的目标是开发新的模型、理论和算法来优化信息更新系统的及时性性能。最近提出的一种称为信息年龄或简称“年龄”的指标将被用作研究及时性绩效的关键指标。首先,本研究调查了信道编码对有损信道上传输信息的及时性的影响。其次,本研究研究了新环境中有限陈旧约束下的年龄最小化问题,其中信息可以划分为多个不相交的单元并进行部分更新。最后,本研究引入了一种新的拉模型,其中目的地向源发送查询以拉取感兴趣的信息,并建议使用复制方案来优化及时性性能。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards the Tradeoff Between Service Performance and Information Freshness
寻求服务性能和信息新鲜度之间的权衡
Age-based Scheduling: Improving Data Freshness for Wireless Real-Time Traffic
基于年龄的调度:提高无线实时流量的数据新鲜度
Waiting But Not Aging: Optimizing Information Freshness Under the Pull Model
等待但不老化:拉动模式下优化信息新鲜度
  • DOI:
    10.1109/tnet.2020.3041654
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li, Fengjiao;Sang, Yu;Liu, Zhongdong;Li, Bin;Wu, Huasen;Ji, Bo
  • 通讯作者:
    Ji, Bo
Combinatorial Sleeping Bandits with Fairness Constraints
具有公平性约束的组合休眠强盗
Anti-Aging Scheduling in Single-Server Queues: A Systematic and Comparative Study
单服务器队列抗老化调度:系统比较研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bo Ji其他文献

M5C2 carbide precipitates in a high-Cr martensitic steel
高铬马氏体钢中 M5C2 碳化物析出
  • DOI:
    10.1007/s12540-014-3014-5
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Yinzhong Shen;Bo Ji;Xiaoling Zhou
  • 通讯作者:
    Xiaoling Zhou
Energy-aware spectrum sharing for dynamic spectrum access via monotonic optimization
通过单调优化实现动态频谱访问的能量感知频谱共享
Node-based service-balanced scheduling for provably guaranteed throughput and evacuation time performance
基于节点的服务平衡调度,可确保吞吐量和疏散时间性能
Evidence‐based guideline for the prevention and management of perioperative infection
围手术期感染预防和管理的循证指南
  • DOI:
    10.1111/jebm.12514
  • 发表时间:
    2023-02-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiaoyu Wang;Mingnan Cao;Hua Tao;Z. Fei;Xiu;Pixia Liang;Baiyun Liu;Jianpin Liu;Xiaoyang Lu;Penglin Ma;S. Si;Shuo Wang;Yuewei Zhang;Yingli Zheng;L. Zang;Xiao Chen;Zhanjun Dong;W. Ge;W. Guo;Xin Hu;Xin Huang;Ling Li;Jianshu Liang;Baoge Liu;Dong Liu;Linna Liu;Songqing Liu;Xianghong Liu;L. Miao;H. Ren;G. Shi;Luwen Shi;Shumei Sun;Xia Tao;Rongsheng Tong;Cheng Wang;Bin Wang;Jincheng Wang;Jingwen Wang;Xiaoling Wang;Xiaoyang Wang;Jian Xie;Shouxia Xie;Huan Yang;Jian;C. You;Hongyi Zhang;Yi Zhang;Cheng;Qingchun Zhao;Jian;Bo Ji;Ruichen Guo;Chunhua Hang;X. Xi;Sheyu Li;Zhicheng Gong;Jianxin Zhou;Rui Wang;Zhigang Zhao
  • 通讯作者:
    Zhigang Zhao
SHADE: Enable Fundamental Cacheability for Distributed Deep Learning Training
SHADE:为分布式深度学习训练提供基本的缓存能力
  • DOI:
    10.1155/2022/2056913
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Redwan Ibne Seraj Khan;Ahmad Hossein Yazdani;Yuqi Fu;Arnab K. Paul;Bo Ji;Xun Jian;Yue Cheng;A. R. Butt
  • 通讯作者:
    A. R. Butt

Bo Ji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bo Ji', 18)}}的其他基金

Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312833
  • 财政年份:
    2023
  • 资助金额:
    $ 17.26万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Information Freshness in Scalable and Energy Constrained Machine to Machine Wireless Networks
合作研究:CNS 核心:中:可扩展且能量受限的机器对机器无线网络中的信息新鲜度
  • 批准号:
    2106427
  • 财政年份:
    2021
  • 资助金额:
    $ 17.26万
  • 项目类别:
    Continuing Grant
CAREER: Theory and Algorithms for Efficient Control of Wireless Networks with Jointly Optimized Performance: High Throughput, Low Delay, and Low Complexity
职业:具有联合优化性能的无线网络高效控制的理论和算法:高吞吐量、低延迟和低复杂性
  • 批准号:
    2112694
  • 财政年份:
    2020
  • 资助金额:
    $ 17.26万
  • 项目类别:
    Continuing Grant
NSF Student Travel Grant for 2020 ACM International Conference on Measurement and Modeling of Computer Systems (ACM SIGMETRICS 2020)
NSF 学生旅费资助 2020 年 ACM 国际计算机系统测量和建模会议 (ACM SIGMETRICS 2020)
  • 批准号:
    2013729
  • 财政年份:
    2020
  • 资助金额:
    $ 17.26万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2020 ACM International Conference on Measurement and Modeling of Computer Systems (ACM SIGMETRICS 2020)
NSF 学生旅费资助 2020 年 ACM 国际计算机系统测量和建模会议 (ACM SIGMETRICS 2020)
  • 批准号:
    2110139
  • 财政年份:
    2020
  • 资助金额:
    $ 17.26万
  • 项目类别:
    Standard Grant
CAREER: Theory and Algorithms for Efficient Control of Wireless Networks with Jointly Optimized Performance: High Throughput, Low Delay, and Low Complexity
职业:具有联合优化性能的无线网络高效控制的理论和算法:高吞吐量、低延迟和低复杂性
  • 批准号:
    1651947
  • 财政年份:
    2017
  • 资助金额:
    $ 17.26万
  • 项目类别:
    Continuing Grant

相似国自然基金

SHR和CIF协同调控植物根系凯氏带形成的机制
  • 批准号:
    31900169
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334898
  • 财政年份:
    2024
  • 资助金额:
    $ 17.26万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334897
  • 财政年份:
    2024
  • 资助金额:
    $ 17.26万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
  • 批准号:
    2403074
  • 财政年份:
    2024
  • 资助金额:
    $ 17.26万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
  • 批准号:
    2403075
  • 财政年份:
    2024
  • 资助金额:
    $ 17.26万
  • 项目类别:
    Standard Grant
CIF: Small: Latent Neural Factor Models for Radio Cartography From Bits
CIF:小:来自 Bits 的无线电制图的潜在神经因子模型
  • 批准号:
    2210004
  • 财政年份:
    2022
  • 资助金额:
    $ 17.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了