CAREER: Understanding Grain Level Residual Stresses Through Concurrent Modeling and Experiments

职业:通过并行建模和实验了解晶粒级残余应力

基本信息

  • 批准号:
    1651956
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Polycrystalline materials such as metals, alloys and ceramics dominate the infrastructure of modern society in terms of both tons of raw material usage and in the breadth of applications, which span energy, transportation, defense, and other sectors. Stresses introduced during the processing of these materials, known as residual stresses, are ubiquitous in all materials and can have tremendous effects on performance. Despite their presence and critical role in component life, many analysis efforts cannot account for residual stresses. This Faculty Early Career Development (CAREER) award supports the method development to characterize residual stresses at the micron level within polycrystalline materials. The research will lead to the development of a computational framework to account for residual stresses, and faithfully predict their distributions. The research leverages recent advances in High Energy Diffraction Microscopy through collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory. This award also supports an innovative educational program that is twofold. First, a series of continuing education courses will be developed focusing on the treatment of residual stress analyses produced in this research, specifically targeted towards the design systems, structural analysis, and manufacturing communities (i.e. non-materials) across professional societies. Second, hands-on learning activities will be introduced within Purdue's Space Day, an existing grade-school outreach program, which will focus on residual stresses in aerospace materials.In order to establish a basic understanding of residual stresses, the research team will: (i) develop a modeling framework to initialize and evolve residual stresses based on a backstress formulation present on individual slip systems, (ii) measure residual stresses and their development at the grain and sub-grain length scales within polycrystalline aggregates via high energy x-ray diffraction microscopy, (iii) develop techniques to map dislocation arrangements within the bulk of structural alloys, and (iv) produce validation datasets for crystal plasticity models containing state dependent variables that were previously impossible to measure. The work is predicated on a synergy between state-of-the-art experiments and simulations at the same length scale. The results will unequivocally elucidate the role of residual stresses across length scales in polycrystalline materials, in order to develop more accurate lifetime predictions of the alloys and fabricate tailored components that offer either minimal or beneficial residual stresses and therefore are more resistant to failures.
金属、合金和陶瓷等多晶材料在现代社会的基础设施中占据着主导地位,无论是在原材料使用量还是在能源、交通、国防和其他领域的应用广度方面。 这些材料加工过程中产生的应力(称为残余应力)在所有材料中普遍存在,并对性能产生巨大影响。 尽管残余应力存在并在部件寿命中发挥着关键作用,但许多分析工作无法解释残余应力。 该学院早期职业发展(CAREER)奖支持用于表征多晶材料中微米级残余应力的方法开发。该研究将导致开发一个计算框架来解释残余应力,并如实预测其分布。 该研究通过与阿贡国家实验室的先进光子源(APS)合作,利用了高能衍射显微镜的最新进展。该奖项还支持双重创新教育计划。 首先,将开发一系列继续教育课程,重点关注本研究中产生的残余应力分析的处理,特别针对跨专业协会的设计系统、结构分析和制造社区(即非材料)。 其次,实践学习活动将在普渡大学的太空日(现有的小学推广计划)中引入,该计划将重点关注航空航天材料中的残余应力。为了建立对残余应力的基本了解,研究小组将:( i) 开发一个建模框架,根据各个滑移系统上存在的背应力公式来初始化和演化残余应力,(ii) 通过高能 X 射线测量多晶聚集体内晶粒和亚晶长度尺度上的残余应力及其发展衍射显微镜,(iii) 开发技术绘制大量结构合金内的位错排列,(iv) 为包含以前无法测量的状态相关变量的晶体塑性模型生成验证数据集。这项工作的基础是相同长度尺度上最先进的实验和模拟之间的协同作用。 研究结果将明确阐明多晶材料中跨长度尺度的残余应力的作用,以便对合金进行更准确的寿命预测,并制造可提供最小或有益残余应力的定制组件,从而更能抵抗故障。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparative assessment of backstress models using high-energy X-ray diffraction microscopy experiments and crystal plasticity finite element simulations
使用高能 X 射线衍射显微镜实验和晶体塑性有限元模拟对背应力模型进行比较评估
  • DOI:
    10.1016/j.ijplas.2020.102887
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    R. B;yopadhyay;yopadhyay;Sven E. Gustafson;K. Kapoor;Diwakar Naragani;D. Pagan;M. Sangid
  • 通讯作者:
    M. Sangid
Residual elastic strain and survivability of stabilized zirconia coated carbon-carbon (C/C) composite
  • DOI:
    10.1016/j.surfcoat.2023.129811
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    J. I. Ferguson;Abdullah Al Saad;M. H. Şeren;J. P. Ko;K. Nygren;R. Trice;M. Sangid
  • 通讯作者:
    M. Sangid
Integrating Materials Model-Based Definitions into Design, Manufacturing, and Sustainment: A Digital Twin Demonstration of Incorporating Residual Stresses in the Lifecycle Analysis of a Turbine Disk
将基于材料模型的定义集成到设计、制造和维护中:将残余应力纳入涡轮盘生命周期分析的数字孪生演示
Revealing 3D intragranular micromechanical fields at triple junctions
揭示三重连接处的 3D 晶粒内微机械场
  • DOI:
    10.1016/j.actamat.2023.119300
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Sven E. Gustafson;W. Ludwig;Raquel Rodríguez;C. Yildirim;K. Shanks;C. Detlefs;M. Sangid
  • 通讯作者:
    M. Sangid
A framework to enable microstructure-sensitive location-specific fatigue life analysis of components and connectivity to the product lifecycle
一个框架,可对组件进行微观结构敏感的特定位置疲劳寿命分析以及与产品生命周期的连接
  • DOI:
    10.1016/j.ijfatigue.2022.107211
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Gopalakrishnan, Saikiran;Bandyopadhyay, Ritwik;Sangid, Michael D.
  • 通讯作者:
    Sangid, Michael D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Sangid其他文献

A Methodology for the Rapid Qualification of Additively Manufactured Materials Based on Pore Defect Structures
基于孔隙缺陷结构的增材制造材料快速鉴定方法
Phasing effects on thermo-mechanical fatigue damage investigated via crystal plasticity modeling
通过晶体塑性模型研究热机械疲劳损伤的相位效应
  • DOI:
    10.1016/j.msea.2024.146642
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Br;on T. Mackey;on;Michael Sangid
  • 通讯作者:
    Michael Sangid

Michael Sangid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Sangid', 18)}}的其他基金

Collaborative Research: Identifying Hydrogen-Density Based Laws for Plasticity in Polycrystalline Materials
合作研究:确定基于氢密度的多晶材料塑性定律
  • 批准号:
    2303109
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Investigation of Heterogeneous Deformation for Discontinuous Fiber Composites Through Combined Experiments and Modeling
通过实验和建模相结合研究不连续纤维复合材料的非均匀变形
  • 批准号:
    1662554
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Design and Optimization of Powder Processed Ni-Base Superalloys via Grain Boundary Engineering
GOALI/合作研究:通过晶界工程设计和优化粉末加工镍基高温合金
  • 批准号:
    1334664
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

面向开放场景的多模态视频表征与理解研究
  • 批准号:
    62376069
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玉米苞叶数目主效QTL基因qHLN1的图位克隆和遗传机理解析
  • 批准号:
    32370672
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
假单胞菌木质素解聚酶系催化、分泌机理解析,以构建木质素产能细胞工厂
  • 批准号:
    32370115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向智能化仿真社会实验的具身人物视觉理解与身份构建
  • 批准号:
    62302296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding the Conceptual Priority Map Guiding Naturalistic Visual Attention for Autistic Individuals
了解指导自闭症患者自然视觉注意力的概念优先级图
  • 批准号:
    10829114
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
CAREER: Characterization and understanding of point defect evolution during corrosion-induced grain boundary migration
职业:腐蚀引起的晶界迁移过程中点缺陷演化的表征和理解
  • 批准号:
    2145455
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Grain Boundary Strength via Adaptive Electron Backscatter Diffraction and Multiscale Analysis
职业:通过自适应电子背散射衍射和多尺度分析了解晶界强度
  • 批准号:
    2043264
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Elevated-Temperature Grain Boundary Deformation Processes of High-Temperature Structural Alloys through Grain Boundary Engineering
职业:通过晶界工程了解高温结构合金的高温晶界变形过程
  • 批准号:
    0533954
  • 财政年份:
    2005
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Elevated-Temperature Grain Boundary Deformation Processes of High-Temperature Structural Alloys through Grain Boundary Engineering
职业:通过晶界工程了解高温结构合金的高温晶界变形过程
  • 批准号:
    0134789
  • 财政年份:
    2002
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了