CAREER: Theory and Algorithms for Efficient Control of Wireless Networks with Jointly Optimized Performance: High Throughput, Low Delay, and Low Complexity

职业:具有联合优化性能的无线网络高效控制的理论和算法:高吞吐量、低延迟和低复杂性

基本信息

  • 批准号:
    1651947
  • 负责人:
  • 金额:
    $ 49.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-01 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

With the advent of smart devices and the Internet of things, wireless technology has spawned a plethora of services that span business, science and engineering, entertainment, safety and security, health monitoring, and cover a large portion of our social interactions. Due to the prevalence of these new services, today's wireless networks are witnessing not only an unprecedented growth in the volume of traffic, but also a significant change in the types of traffic (e.g., a much higher percentage of voice/video traffic with more stringent delay requirements). These new trends require next-generation wireless networks to provide not only high data rates (tens of gigabits per second), but also ultra-low latencies (sub-millisecond). Moreover, as wireless networks grow and support an increasingly large number of users, network control algorithms must also incur low complexity in order to be implemented in practice. However, the question of how to simultaneously achieve high throughput, low delay and low complexity remains largely open. Addressing this major research challenge is a main goal of this project. Not only is this research expected to substantially advance our understanding of designing efficient control algorithms for wireless networks with jointly optimized performance, but it would also expand/create the much-needed theoretical foundations for developing simple and practical protocols to optimize the key performance metrics needed in the design of next-generation wireless networks. This research will also be closely integrated with a comprehensive educational plan, which is focused on providing research experiences to undergraduate and K-12 students, recruiting and training underrepresented students, and engaging in curriculum development activities. The goal of this project is to create new theoretical foundations for designing provably efficient network control algorithms that perform well in all three dimensions of throughput, delay, and complexity. Specifically, this research will be carried out around three main thrusts: (i) it focuses on intra-cell control for a multi-channel cellular network, and aims to build a theoretical framework for designing low-complexity scheduling algorithms with provably guaranteed optimal throughput and optimal (or near-optimal) large-deviations delay rate-function; (ii) it considers a more challenging setting of network-wide control for larger systems (e.g., a dense multi-cell system or an ad hoc wireless network), and aims to develop a new node-based approach for designing efficient scheduling algorithms with provable throughput and evacuation time performance; and (iii) it considers distributed network-side control and aims to design low-complexity algorithms that achieve high throughput and low delay.
随着智能设备和物联网的出现,无线技术催生了大量的服务,涵盖商业、科学与工程、娱乐、安全与保障、健康监测,并涵盖了我们大部分的社交互动。由于这些新服务的盛行,当今的无线网络不仅出现了前所未有的流量增长,而且流量类型也发生了显着变化(例如,语音/视频流量的比例更高,且要求更严格)。延迟要求)。这些新趋势要求下一代无线网络不仅提供高数据速率(每秒数十吉比特),而且还提供超低延迟(亚毫秒)。此外,随着无线网络的发展并支持越来越多的用户,网络控制算法也必须具有较低的复杂性才能在实践中实现。然而,如何同时实现高吞吐量、低延迟和低复杂性的问题仍然悬而未决。解决这一重大研究挑战是该项目的主要目标。这项研究不仅有望大大提高我们对设计具有联合优化性能的无线网络有效控制算法的理解,而且还将扩展/创建急需的理论基础,以开发简单实用的协议来优化所需的关键性能指标下一代无线网络的设计。这项研究还将与全面的教育计划紧密结合,该计划的重点是为本科生和 K-12 学生提供研究经验,招募和培训代表性不足的学生,并参与课程开发活动。该项目的目标是为设计可证明有效的网络控制算法创建新的理论基础,这些算法在吞吐量、延迟和复杂性的所有三个维度上都表现良好。具体来说,这项研究将围绕三个主要方向进行:(i)它专注于多信道蜂窝网络的小区内控制,旨在建立一个理论框架来设计低复杂度的调度算法,并可证明保证最佳吞吐量。以及最优(或接近最优)大偏差延迟率函数; (ii)它考虑了对大型系统(例如,密集的多小区系统或自组织无线网络)更具挑战性的网络范围控制设置,并旨在开发一种新的基于节点的方法来设计高效的调度算法可证明的吞吐量和疏散时间性能; (iii)它考虑分布式网络侧控制,旨在设计实现高吞吐量和低延迟的低复杂度算法。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal SIC Ordering and Computation Resource Allocation in MEC-aware NOMA NB-IoT Networks
MEC 感知 NOMA NB-IoT 网络中的最佳 SIC 排序和计算资源分配
  • DOI:
    10.1109/jiot.2018.2875046
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Qian, Li Ping;Feng, Anqi;Huang, Yupin;Wu, Yuan;Ji, Bo;Shi, Zhiguo
  • 通讯作者:
    Shi, Zhiguo
Optimizing Flow Bandwidth Consumption with Traffic-diminishing Middlebox Placement
通过减少流量的中间盒放置来优化流量带宽消耗
Combinatorial Sleeping Bandits with Fairness Constraints
Node-Based Service-Balanced Scheduling for Provably Guaranteed Throughput and Evacuation Time Performance
基于节点的服务平衡调度,可保证吞吐量和疏散时间性能
Virtual Network Function Deployment in Tree-Structured Networks
树形网络中虚拟网络功能部署
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bo Ji其他文献

M5C2 carbide precipitates in a high-Cr martensitic steel
高铬马氏体钢中 M5C2 碳化物析出
  • DOI:
    10.1007/s12540-014-3014-5
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Yinzhong Shen;Bo Ji;Xiaoling Zhou
  • 通讯作者:
    Xiaoling Zhou
Energy-aware spectrum sharing for dynamic spectrum access via monotonic optimization
通过单调优化实现动态频谱访问的能量感知频谱共享
Node-based service-balanced scheduling for provably guaranteed throughput and evacuation time performance
基于节点的服务平衡调度,可确保吞吐量和疏散时间性能
Evidence‐based guideline for the prevention and management of perioperative infection
围手术期感染预防和管理的循证指南
  • DOI:
    10.1111/jebm.12514
  • 发表时间:
    2023-02-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiaoyu Wang;Mingnan Cao;Hua Tao;Z. Fei;Xiu;Pixia Liang;Baiyun Liu;Jianpin Liu;Xiaoyang Lu;Penglin Ma;S. Si;Shuo Wang;Yuewei Zhang;Yingli Zheng;L. Zang;Xiao Chen;Zhanjun Dong;W. Ge;W. Guo;Xin Hu;Xin Huang;Ling Li;Jianshu Liang;Baoge Liu;Dong Liu;Linna Liu;Songqing Liu;Xianghong Liu;L. Miao;H. Ren;G. Shi;Luwen Shi;Shumei Sun;Xia Tao;Rongsheng Tong;Cheng Wang;Bin Wang;Jincheng Wang;Jingwen Wang;Xiaoling Wang;Xiaoyang Wang;Jian Xie;Shouxia Xie;Huan Yang;Jian;C. You;Hongyi Zhang;Yi Zhang;Cheng;Qingchun Zhao;Jian;Bo Ji;Ruichen Guo;Chunhua Hang;X. Xi;Sheyu Li;Zhicheng Gong;Jianxin Zhou;Rui Wang;Zhigang Zhao
  • 通讯作者:
    Zhigang Zhao
SHADE: Enable Fundamental Cacheability for Distributed Deep Learning Training
SHADE:为分布式深度学习训练提供基本的缓存能力
  • DOI:
    10.1155/2022/2056913
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Redwan Ibne Seraj Khan;Ahmad Hossein Yazdani;Yuqi Fu;Arnab K. Paul;Bo Ji;Xun Jian;Yue Cheng;A. R. Butt
  • 通讯作者:
    A. R. Butt

Bo Ji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bo Ji', 18)}}的其他基金

Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312833
  • 财政年份:
    2023
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Information Freshness in Scalable and Energy Constrained Machine to Machine Wireless Networks
合作研究:CNS 核心:中:可扩展且能量受限的机器对机器无线网络中的信息新鲜度
  • 批准号:
    2106427
  • 财政年份:
    2021
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Continuing Grant
CAREER: Theory and Algorithms for Efficient Control of Wireless Networks with Jointly Optimized Performance: High Throughput, Low Delay, and Low Complexity
职业:具有联合优化性能的无线网络高效控制的理论和算法:高吞吐量、低延迟和低复杂性
  • 批准号:
    2112694
  • 财政年份:
    2020
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Continuing Grant
NSF Student Travel Grant for 2020 ACM International Conference on Measurement and Modeling of Computer Systems (ACM SIGMETRICS 2020)
NSF 学生旅费资助 2020 年 ACM 国际计算机系统测量和建模会议 (ACM SIGMETRICS 2020)
  • 批准号:
    2110139
  • 财政年份:
    2020
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2020 ACM International Conference on Measurement and Modeling of Computer Systems (ACM SIGMETRICS 2020)
NSF 学生旅费资助 2020 年 ACM 国际计算机系统测量和建模会议 (ACM SIGMETRICS 2020)
  • 批准号:
    2013729
  • 财政年份:
    2020
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Standard Grant
CRII: CIF: Models, Theories and Algorithms for Timeliness Optimization in Information-update Systems
CRII:CIF:信息更新系统时效性优化的模型、理论和算法
  • 批准号:
    1657162
  • 财政年份:
    2017
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Standard Grant

相似国自然基金

基于图的高维线性回归问题的统计理论与牛顿型算法
  • 批准号:
    12301420
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
含有绝对值结构优化问题的理论与算法研究
  • 批准号:
    12371304
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于极小极大Tucker秩张量补全的理论与快速算法研究
  • 批准号:
    12371381
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于N-S方程的源项识别及参数控制反问题数学理论和算法研究
  • 批准号:
    12371420
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
纠删除错误码的构造方法与译码算法及理论研究
  • 批准号:
    62371371
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Theory and Algorithms for Learning with Frozen Pretrained Models
职业:使用冻结的预训练模型进行学习的理论和算法
  • 批准号:
    2339978
  • 财政年份:
    2024
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Continuing Grant
CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
  • 批准号:
    2338506
  • 财政年份:
    2024
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Continuing Grant
CAREER: Theory for Dynamic Graph Algorithms
职业:动态图算法理论
  • 批准号:
    2238138
  • 财政年份:
    2023
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Continuing Grant
CAREER: Parallel Algorithms: Theory for Practice
职业:并行算法:理论实践
  • 批准号:
    2238358
  • 财政年份:
    2023
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了