PREEVENTS Track 2: Collaborative Research: Ocean Salinity as a predictor of US hydroclimate extremes

预防事件轨道 2:合作研究:海洋盐度作为美国极端水文气候的预测因子

基本信息

  • 批准号:
    1663704
  • 负责人:
  • 金额:
    $ 67.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Water availability is a fundamental necessity for society. As the largest moisture reservoir and ultimate moisture source, water from the oceans sustains terrestrial precipitation and is thus key to understanding variability in the water cycle on land. Floods and droughts represent extremes of the water cycle that have enormous consequences for society. In recent years Western drought has led to billions of dollars of agricultural losses and extensive wildfires, while floods produced similar losses in the South, Midwest and East of the US. They are caused by an excess or deficit of moisture exported from ocean to land. Moisture evaporating from the ocean surface is the ultimate source for terrestrial precipitation. Thus, the availability of the oceanic moisture supply modulates the severity of hydroclimate extremes on land. As moisture exits the ocean, it leaves a signature in sea surface salinity. Recent studies have provided remarkable new evidence that salinity can be utilized as a skillful predictor of precipitation in the US Midwest, Southwest and other regions. The salinity precursors significantly outperform temperature-based predictors, especially in the years with heavy precipitation or exceptional drought. Thus, sea surface salinity has great potential to provide a transformative improvement to seasonal forecasts of US hydroclimate extremes. This project will develop the scientific basis for a drought and flood early warning system for the US based on these new insights into the predictive potential of ocean salinity and the expanding salinity monitoring system that uses both in-situ measurements and satellites. This will lead to a number of societal benefits: lives saved and property preserved from wildfires and floods; improved crop yields resulting from more accurate seasonal rainfall forecasts; national security advances realized by better anticipation of destabilized regions affected by drought or flood crises; and more accurate forecasting of energy demand and the impact of water shortages on power plants. Several undergraduate students will have the opportunity to gain valuable research experience, and thus the project will help to train the next generation of climate scientists. Project findings will also be incorporated into graduate courses taught through the MIT/WHOI joint program and at Duke University, and the knowledge will be disseminated to the general public. The processes that produce the newly identified relationships between extreme precipitation and sea surface salinity will be explored. Daily precipitation data and a Bayesian statistical framework will be used to sample the extreme events in the US. Based on the Bayesian inference, the pre-season salinity precursors will be explored and mechanisms by which the water cycle generates the salinity signatures determined by calculating atmospheric moisture fluxes and the terms in the surface salinity budget. In addition, the oceanic moisture flux onto land will be tracked, and the processes assessed by which extremes develop through the moisture supply and/or energy redistribution in the atmospheric column. Machine-learning algorithms to predict extremes using the sea surface salinity precursors will be developed and applied. Novel approaches will be used in this project, including the use of Bayesian statistics to identify the optimal sea surface salinity and temperature predictors for rainfall extremes, analysis of the oceanic salinity budget to identify the driving atmospheric variables, analysis of the atmospheric circulations that transport water from ocean to land, and the development of machine learning algorithms to provide optimal seasonal predictions of extreme drought or floods.
水的供应是社会的基本必需品。作为最大的水分库和最终水分源,海洋中的水维持着陆地降水,因此是了解陆地水循环变化的关键。洪水和干旱代表了水循环的极端情况,对社会造成巨大影响。近年来,西部干旱导致数十亿美元的农业损失和大范围的野火,而洪水在美国南部、中西部和东部造成了类似的损失。它们是由从海洋输送到陆地的水分过多或不足引起的。 从海洋表面蒸发的水分是陆地降水的最终来源。因此,海洋水分供应的可用性调节了陆地上极端水文气候的严重程度。当水分离开海洋时,它会在海面盐度上留下痕迹。最近的研究提供了显着的新证据,表明盐度可以作为美国中西部、西南部和其他地区降水的巧妙预测因子。盐度前体的表现明显优于基于温度的预测,特别是在降水量大或异常干旱的年份。 因此,海面盐度具有巨大的潜力,可以为美国极端水文气候的季节性预测提供革命性的改进。该项目将为美国干旱和洪水预警系统奠定科学基础,该系统基于对海洋盐度预测潜力的新见解以及使用现场测量和卫星的不断扩大的盐度监测系统。这将带来许多社会效益:挽救生命并保护财产免受野火和洪水的影响;更准确的季节性降雨预测提高了作物产量;通过更好地预测受干旱或洪水危机影响的不稳定地区,实现国家安全进步;更准确地预测能源需求以及缺水对发电厂的影响。一些本科生将有机会获得宝贵的研究经验,因此该项目将有助于培养下一代气候科学家。项目研究结果还将纳入通过麻省理工学院/WHOI 联合项目和杜克大学教授的研究生课程,并将知识传播给公众。将探索产生极端降水和海面盐度之间新确定的关系的过程。每日降水数据和贝叶斯统计框架将用于对美国的极端事件进行采样。基于贝叶斯推论,将探索季前盐度前兆以及水循环产生盐度特征的机制,通过计算大气水分通量和地表盐度预算中的项来确定。此外,还将跟踪海洋水分流入陆地的通量,并评估通过大气柱中的水分供应和/或能量重新分配而形成极端情况的过程。将开发和应用利用海面盐度前兆来预测极端情况的机器学习算法。该项目将采用新方法,包括使用贝叶斯统计来确定极端降雨的最佳海面盐度和温度预测因子、分析海洋盐度预算以确定驱动大气变量、分析输送水的大气环流从海洋到陆地,以及机器学习算法的开发,以提供极端干旱或洪水的最佳季节性预测。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Near-Surface Salinity Reveals the Oceanic Sources of Moisture for Australian Precipitation through Atmospheric Moisture Transport
  • DOI:
    10.1175/jcli-d-19-0579.1
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    S. Rathore;N. Bindoff;C. Ummenhofer;H. Phillips;M. Feng
  • 通讯作者:
    S. Rathore;N. Bindoff;C. Ummenhofer;H. Phillips;M. Feng
Improving Australian Rainfall Prediction Using Sea Surface Salinity
  • DOI:
    10.1175/jcli-d-20-0625.1
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    S. Rathore;N. Bindoff;C. Ummenhofer;H. Phillips;M. Feng;Mayank D Mishra
  • 通讯作者:
    S. Rathore;N. Bindoff;C. Ummenhofer;H. Phillips;M. Feng;Mayank D Mishra
Forecast of summer precipitation in the Yangtze River Valley based on South China Sea springtime sea surface salinity
基于南海春季海表盐度的长江流域夏季降水预测
  • DOI:
    10.1007/s00382-019-04878-y
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Zeng Lili;Schmitt Raymond W.;Li Laifang;Wang Qiang;Wang Dongxiao
  • 通讯作者:
    Wang Dongxiao
Skillful Long‐Lead Prediction of Summertime Heavy Rainfall in the US Midwest From Sea Surface Salinity
  • DOI:
    10.1029/2022gl098554
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Laifang Li;R. Schmitt;C. Ummenhofer
  • 通讯作者:
    Laifang Li;R. Schmitt;C. Ummenhofer
Amplified seasonal cycle in hydroclimate over the Amazon river basin and its plume region
  • DOI:
    10.1038/s41467-020-18187-0
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Liang, Yu-Chiao;Lo, Min-Hui;Steffen, John D.
  • 通讯作者:
    Steffen, John D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caroline Ummenhofer其他文献

Caroline Ummenhofer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Caroline Ummenhofer', 18)}}的其他基金

Collaborative Research: Reconstructing bottom water temperatures from bivalves on the continental shelf: Holocene history as a window to the future in the Mid- Atlantic
合作研究:重建大陆架双壳类底层水温:全新世历史是通向大西洋中部未来的窗口
  • 批准号:
    2202751
  • 财政年份:
    2022
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Standard Grant
Collaborative Research: P2C2--Evaluating the Origins of Multidecadal Variability in Late Holocene Indian Summer Monsoon Rainfall in Nepal
合作研究:P2C2——评估尼泊尔全新世晚期印度夏季季风降雨的多年代际变化的起源
  • 批准号:
    2102844
  • 财政年份:
    2021
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Standard Grant
Analyzing Weather Data from Historic Logbooks to Assess Changing Wind and Atmospheric Pressure Patterns
分析历史日志中的天气数据以评估不断变化的风和气压模式
  • 批准号:
    1852647
  • 财政年份:
    2019
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Standard Grant
Collaborative Research: P2C2--Bridging the Gap from Northern Iberia to Northwest Africa to Reconstruct Atmospheric Dynamics and Hydroclimate for the Last 2,500 Years
合作研究:P2C2——弥合从伊比利亚北部到非洲西北部的差距,重建过去 2,500 年的大气动力学和水文气候
  • 批准号:
    1804132
  • 财政年份:
    2018
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Standard Grant
Collaborative Research: P2C2--Reconstructing Holocene Dynamics of the Indo-Pacific Tropical Rain Belt using Australian Stalagmites and Coupled Climate Models
合作研究:P2C2——利用澳大利亚石笋和耦合气候模型重建印度洋-太平洋热带雨带全新世动态
  • 批准号:
    1602455
  • 财政年份:
    2016
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Standard Grant
Collaborative Research: P2C2--Reconstructing Spatiotemporal Climatic Patterns for Northeastern Canada
合作研究:P2C2——重建加拿大东北部时空气候格局
  • 批准号:
    1602009
  • 财政年份:
    2016
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Standard Grant
Decadal Variability in the North Atlantic Extra-Tropics: The Role of Coupling Between Atmospheric Blocking and the Atlantic Multidecadal Oscillation
北大西洋温带地区的年代际变化:大气阻塞与大西洋数十年振荡之间的耦合作用
  • 批准号:
    1355339
  • 财政年份:
    2014
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Standard Grant
Collaborative Research: P2C2--Reconstructing Hydroclimatic Asian Monsoon Variability for the Past Millennium from Tree Rings: Myanmar and Vicinity
合作研究:P2C2——从树木年轮重建过去千年亚洲季风水文气候变化:缅甸及其周边地区
  • 批准号:
    1304245
  • 财政年份:
    2013
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Standard Grant
Collaborative Research: P2C2--Reconstructing Changes in Asian Monsoon Circulation during the Last Millennium from Stable Isotopes in Tropical Tree Rings
合作研究:P2C2——从热带树木年轮中的稳定同位素重建近千年来亚洲季风环流的变化
  • 批准号:
    1203704
  • 财政年份:
    2012
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Standard Grant

相似国自然基金

融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
  • 批准号:
    62373344
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于三维显微图像序列的细胞追踪与迁移行为分析方法
  • 批准号:
    62301296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
  • 批准号:
    82301010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医养结合机构服务模式对老年人健康绩效的影响、机制与引导政策:基于准自然实验的追踪研究
  • 批准号:
    72374125
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
三维黏弹性TTI介质中地震射线追踪及走时成像方法研究
  • 批准号:
    42304060
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PREEVENTS: Track 2: Collaborative Research: Defining precursors of ground failure: a multiscale framework for early landslide prediction through geomechanics and remote sensing
预防措施:轨道 2:协作研究:定义地面破坏的前兆:通过地质力学和遥感进行早期滑坡预测的多尺度框架
  • 批准号:
    2023112
  • 财政年份:
    2020
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Continuing Grant
PREEVENTS Track 2: Collaborative Research: Geomorphic Versus Climatic Drivers of Changing Coastal Flood Risk
预防事件轨道 2:协作研究:变化的沿海洪水风险的地貌与气候驱动因素
  • 批准号:
    2013280
  • 财政年份:
    2019
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Continuing Grant
PREEVENTS Track 2: Collaborative Research: Predicting Hurricane Risk along the United States East Coast in a Changing Climate
预防事件轨道 2:合作研究:预测气候变化中美国东海岸的飓风风险
  • 批准号:
    1854956
  • 财政年份:
    2019
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Continuing Grant
PREEVENTS Track 2: Collaborative Research: Multi-scale processes impacting the predictability of severe convective weather events
预防事件轨道 2:协作研究:影响强对流天气事件可预测性的多尺度过程
  • 批准号:
    1854966
  • 财政年份:
    2019
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Continuing Grant
PREEVENTS Track 2: Collaborative Research: Geomorphic Versus Climatic Drivers of Changing Coastal Flood Risk
预防事件轨道 2:协作研究:变化的沿海洪水风险的地貌与气候驱动因素
  • 批准号:
    1854946
  • 财政年份:
    2019
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了