Collaborative Research: Improving lower mantle seismic sampling and model resolution using multi-bounce and diffracted waves

合作研究:利用多次反射波和衍射波提高下地幔地震采样和模型分辨率

基本信息

  • 批准号:
    1648770
  • 负责人:
  • 金额:
    $ 10.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-12-15 至 2019-11-30
  • 项目状态:
    已结题

项目摘要

Earthquakes generate seismic waves that travel through the entire interior of the planet. These waves are used to image the planetary interior. The tool of seismic tomography is frequently used to produce images of the variation of seismic wave speeds within the Earth's mantle (the shell roughly occupying the outer half of the planet). Our proposed work aims to improve upon past tomographic studies by using a larger suite of types of seismic waves that will be measured in a new and novel way in order to improve accuracy. Some of the waves include seismic S waves that bounce off of the Earth's core and back to the surface, multiple times. This enables us to add seismic wave sampling of Earth?s southern hemisphere, which is more poorly sampled than the northern hemisphere in tomography studies. Improving the resolution of Earth's mantle structure is important for improving our understanding of the nature of global internal processes, including the convective dynamics of the mantle and evolution of the planet. Also of interest is improving the clarity of tomographic images within two massive blob-like structures at the base of Earth's mantle, which are continental in size and extend at least 1000 km up into the mantle (scientifically referred to as Large Low Shear Velocity Provinces, or LLSVPs, which emphasizes the large reduction in the speeds of shear waves through these structures).The characterization of the large-scale aspects of LLSVPs by the method of seismic tomography yields similar results from different research groups. However, the smaller scale structure differs between models. This 2-year project aims to add more information to the process that is sensitive to the smaller scale structure, namely careful travel time measurements of multi-bounce S and ScS waves, and also diffracted S and P waves. We will use these in both forward and inverse modeling approaches. The full tomographic inversion will be for both P and S structure. The forward approach iteratively updates existing tomography models using new data, and better preserves sharper structures. Waves bouncing up to 5 times, thus 6 legs of the journey, e.g., S6 and ScS6 (i.e., six S and ScS paths), are clearly observed for larger earthquakes. The multi-bounce data are well suited for improving mantle imaging, since they allow for both minor and major arc travel paths (i.e., the great circle path between earthquake and station, as well as along the great circle path in the opposite direction, the long way around the planet, respectively). We will develop finite frequency kernels for these long path data. Final 3D models from both the forward and inverse approaches will be used to compute 3D synthetic seismograms to compare to actual data. This will both assess model robustness as well as compare solutions for the forward and inverse methods. Mantle heterogeneity depends upon temperature, mineralogy, phase, and state, and while tomographic imaging only provides us with a present-day snapshot in time, it can be related to the evolutionary pathway Earth has taken. Recently, there has been increased attention to the relationship between surface observables, such as the locations of hot spot volcanism and the origination locations of large igneous provinces, with deep structures (e.g., LLSVPs). Thus improving resolution in seismic images of mantle heterogeneity brings us closer to understanding the structure, dynamics, and evolution of our planet.
地震产生的地震波穿过地球的整个内部。 这些波用于拍摄行星内部的图像。 地震层析成像工具经常用于生成地幔(大致占据地球外半部分的外壳)内地震波速度变化的图像。 我们提出的工作旨在通过使用更多类型的地震波来改进过去的层析成像研究,这些地震波将以一种新颖的方式进行测量,以提高准确性。 其中一些波包括地震 S 波,它会多次从地核反弹回地表。 这使我们能够添加地球南半球的地震波采样,在断层扫描研究中,南半球的采样质量比北半球要差。提高地球地幔结构的分辨率对于提高我们对全球内部过程性质的理解非常重要,包括地幔的对流动力学和地球的演化。 同样令人感兴趣的是提高地幔底部两个巨大斑点状结构内断层扫描图像的清晰度,这些结构的大小为大陆性,延​​伸至地幔至少 1000 公里(科学上称为大低剪切速度省,或 LLSVP,它强调通过这些结构的剪切波速度的大幅降低)。通过地震层析成像方法对 LLSVP 的大尺度特征进行表征产生了类似的结果来自不同的研究小组。 然而,不同型号的较小规模结构有所不同。 这个为期两年的项目旨在向对较小尺度结构敏感的过程添加更多信息,即多次反射 S 波和 ScS 波以及衍射 S 波和 P 波的仔细旅行时间测量。我们将在正向和逆向建模方法中使用它们。完整的层析成像反演将针对 P 结构和 S 结构。前向方法使用新数据迭代更新现有的断层扫描模型,并更好地保留更清晰的结构。对于较大的地震,可以清楚地观察到波浪最多弹跳 5 次,因此可以清楚地观察到 6 个旅程段,例如 S6 和 ScS6(即 6 个 S 和 ScS 路径)。多次反射数据非常适合改善地幔成像,因为它们考虑了小弧和大弧行进路径(即地震和台站之间的大圆路径,以及沿相反方向的大圆路径,分别绕地球很远)。我们将为这些长路径数据开发有限频率内核。正向和逆向方法的最终 3D 模型将用于计算 3D 合成地震图,以与实际数据进行比较。这将评估模型的稳健性以及比较正向和逆向方法的解决方案。地幔异质性取决于温度、矿物学、相和状态,虽然断层扫描成像只能为我们提供当前的快照,但它可能与地球所采取的进化路径有关。 最近,人们越来越关注地表观测数据(例如热点火山活动的位置和大型火成岩省的起源位置)与深层结构(例如 LLSVP)之间的关系。因此,提高地幔非均质性地震图像的分辨率使我们更了解地球的结构、动力学和演化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Grand其他文献

Stephen Grand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Grand', 18)}}的其他基金

Collaborative Research: Full waveform inversion for P and S seismic structure beneath Tibet
合作研究:青藏高原以下P、S地震构造全波形反演
  • 批准号:
    1838444
  • 财政年份:
    2019
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Joint seismic-geodynamic constraints on deep Earth structure - Implications for mantle convection and Earth rotation
CSEDI合作研究:地球深层结构的联合地震-地球动力学约束——对地幔对流和地球自转的影响
  • 批准号:
    1902400
  • 财政年份:
    2019
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: Seismic Investigation of Slab Structure and Back Arc Volcanism in the Sea of Japan Region
合作研究:日本海地区板状构造和弧后火山活动的地震调查
  • 批准号:
    1547494
  • 财政年份:
    2015
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: NorthEast China Extended seiSmic Array (NECESS Array): Deep Subduction, Mantle Dynamics, and Lithospheric Evolution Beneath Northeast China
合作研究:中国东北扩展地震台阵(NECESS Array):中国东北地区深俯冲、地幔动力学和岩石圈演化
  • 批准号:
    0635855
  • 财政年份:
    2007
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: Africa Array - Imaging the Africa Super Plume
合作研究:非洲阵列 - 非洲超级羽流成像
  • 批准号:
    0440222
  • 财政年份:
    2005
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Mapping the Rivera Subduction Zone
合作研究:绘制里维拉俯冲带地图
  • 批准号:
    0335782
  • 财政年份:
    2004
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Standard Grant
Mantle Structure from Joint Inversions of Seismic and Geodynamic Data
地震和地球动力学数据联合反演的地幔结构
  • 批准号:
    0309189
  • 财政年份:
    2003
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Res.: Composition and Seismic Structure of the Mantle Transition Zone
CSEDI协作研究:地幔过渡带的组成和地震结构
  • 批准号:
    0112256
  • 财政年份:
    2001
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Standard Grant
Collaborative Research: The African Mantle, A Case Study of Seismic Structure, Composition and Dynamics
合作研究:非洲地幔,地震结构、成分和动力学的案例研究
  • 批准号:
    0073643
  • 财政年份:
    2000
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Colorado Plateau/Rio Grande Rift/ Great Plains Seismic Transect
合作研究:科罗拉多高原/里奥格兰德裂谷/大平原地震断面
  • 批准号:
    9707188
  • 财政年份:
    1999
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Continuing Grant

相似国自然基金

肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道菌群代谢物4-氨基苯甲酸通过促进GLP-1分泌改善NAFLD的研究
  • 批准号:
    82304122
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小儿推拿调控脑瘫后类泛素化修饰改善PARP1介导的神经元程序性坏死的机制研究
  • 批准号:
    82305428
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型竞争性抗栓蛋白FGL1通过激活LAG3诱导Treg分化改善心梗后微循环损伤的应用基础研究
  • 批准号:
    82370305
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
  • 批准号:
    2345092
  • 财政年份:
    2024
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
  • 批准号:
    2345093
  • 财政年份:
    2024
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Worker Safety by Understanding Risk Compensation as a Latent Precursor of At-risk Decisions
合作研究:通过了解风险补偿作为风险决策的潜在前兆来提高工人安全
  • 批准号:
    2326937
  • 财政年份:
    2023
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306660
  • 财政年份:
    2023
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306659
  • 财政年份:
    2023
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了