US Ignite: Focus Area 1: Fast Autonomic Traffic Congestion Monitoring and Incident Detection through Advanced Networking, Edge Computing, and Video Analytics
US Ignite:重点领域 1:通过先进网络、边缘计算和视频分析进行快速自主交通拥堵监控和事件检测
基本信息
- 批准号:1647170
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Video-based traffic monitoring systems have been widely used for traffic management, incident detection, intersection control, and public safety operations. Current designs pose critical challenges. First, it relies heavily on human operators to monitor and analyze video images. Second, commercially available computer vision technologies cannot satisfactorily handle severe conditions, such as weather and glare, which significantly impair video image quality. Third, the simultaneous transmission of numerous video signals to a central facility creates extreme demands on the communications network, which can lead to jamming. This project presents a novel approach that incorporates wireless sensor networks, hierarchical edge-computing, and advanced computer vision technology. The methods can be expanded to address a wide spectrum of potential applications including wrong-way driving alerts, congestion detection under bad weather conditions, accident scene management support, suspect vehicle tracking, wildfire detection and alert, and emergency evacuation, which could save lives and hundreds of billions of dollars annually. It also aligns with the smart city initiative.By using bluetooth/WiFi detection technology, the trajectories and speeds of vehicles equipped with such devices will be collected. This information, along with the captured video data, will be analyzed by the proposed computer vision software, installed at the edge of the network on cloudlets, to perform fast detection and prioritization of the video streams from different cameras. The proposed hierarchical edge-computing paradigm will not only enable real-time big data analysis at the edge but will also be demonstrated and actualized to perform timely efficient video analytics. Depending on the weather conditions, different detection and prioritization algorithms will be activated. Video coding will then be implemented to transmit the selected video streams to the central back-end system for further processing. If an incident is detected by the algorithm either at the edge or at the back-end, a necessary feedback action will be taken, such as calling an emergency group, the highway safety dispatch, or the police. Under a technical partnership with New Jersey Department of Transportation, multiple pilot tests of the proposed system will be implemented on selected highway corridors designated by the department.
基于视频的交通监控系统已广泛应用于交通管理、事件检测、交叉口控制和公共安全运营。当前的设计提出了严峻的挑战。首先,它严重依赖人工操作员来监控和分析视频图像。其次,商用计算机视觉技术无法令人满意地处理恶劣条件,例如天气和眩光,这会严重损害视频图像质量。第三,同时向中央设施传输大量视频信号对通信网络提出了极高的要求,这可能导致干扰。该项目提出了一种新颖的方法,融合了无线传感器网络、分层边缘计算和先进的计算机视觉技术。这些方法可以扩展到广泛的潜在应用,包括逆向驾驶警报、恶劣天气条件下的拥堵检测、事故现场管理支持、可疑车辆跟踪、野火检测和警报以及紧急疏散,这可以挽救生命和安全。每年数千亿美元。它还符合智慧城市倡议。通过使用蓝牙/WiFi检测技术,将收集配备此类设备的车辆的轨迹和速度。这些信息以及捕获的视频数据将由安装在云网络边缘的计算机视觉软件进行分析,以对来自不同摄像机的视频流进行快速检测和优先级排序。所提出的分层边缘计算范例不仅能够在边缘进行实时大数据分析,而且还将被演示和实现以执行及时高效的视频分析。根据天气条件,将激活不同的检测和优先级算法。然后将实施视频编码,将选定的视频流传输到中央后端系统进行进一步处理。如果算法在边缘或后端检测到事件,将采取必要的反馈行动,例如呼叫紧急小组、高速公路安全调度或警察。根据与新泽西州交通部的技术合作,拟议系统的多次试点测试将在该部门指定的选定高速公路走廊上进行。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A New Online Approach for Moving Cast Shadow Suppression in Traffic Videos
交通视频中移动投射阴影抑制的新在线方法
- DOI:10.1109/itsc48978.2021.9565049
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Ghahremannezhad, Hadi;Shi, Hang;Liu, Chengjun
- 通讯作者:Liu, Chengjun
Anomalous Driving Detection for Traffic Surveillance Video Analysis
用于交通监控视频分析的异常驾驶检测
- DOI:10.1109/ist50367.2021.9651372
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Shi, Hang;Ghahremannezhad, Hadi;Liu, Chengjun
- 通讯作者:Liu, Chengjun
Towards Workload Balancing in Fog Computing Empowered IoT
在雾计算赋能的物联网中实现工作负载平衡
- DOI:10.1109/tnse.2018.2852762
- 发表时间:2020-01-01
- 期刊:
- 影响因子:6.6
- 作者:Q. Fan;N. Ansari
- 通讯作者:N. Ansari
A Statistical Modeling Method for Road Recognition in Traffic Video Analytics
交通视频分析中道路识别的统计建模方法
- DOI:10.1109/coginfocom50765.2020.9237905
- 发表时间:2020-09-23
- 期刊:
- 影响因子:0
- 作者:Hang Shi;Hadi Ghahremannezhad;Chengjun Liu
- 通讯作者:Chengjun Liu
Online Algorithm for Opportunistic Handling of Received Packets in Vehicular Networks
车载网络中接收数据包的机会性处理在线算法
- DOI:10.1109/tits.2018.2809917
- 发表时间:2019-01-01
- 期刊:
- 影响因子:8.5
- 作者:Ala I. Al;Ammar Gharaibeh;Ihab Mohammed;Sayed Jahed Hussini;Abdallah Khreishah;Issa M. Khalil
- 通讯作者:Issa M. Khalil
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abdallah Khreishah其他文献
Federated Learning Aided Deep Convolutional Neural Network Solution for Smart Traffic Management
联邦学习辅助深度卷积神经网络智能交通管理解决方案
- DOI:
10.1109/noms56928.2023.10154300 - 发表时间:
2023-05-08 - 期刊:
- 影响因子:0
- 作者:
Guanxiong Liu;Nicholas Furth;Hang Shi;Abdallah Khreishah;Jo Young Lee;Nirwan Ansari;Chengjun Liu;Y. Jararweh - 通讯作者:
Y. Jararweh
Sustainable GPU Computing at Scale
大规模可持续 GPU 计算
- DOI:
10.1109/cse.2011.55 - 发表时间:
2011-08-24 - 期刊:
- 影响因子:0
- 作者:
Justin Y. Shi;Moussa Taifi;Abdallah Khreishah;Jie Wu - 通讯作者:
Jie Wu
CLAS: A Novel Communications Latency Based Authentication Scheme
CLAS:一种新颖的基于通信延迟的身份验证方案
- DOI:
10.1155/2017/4286903 - 发表时间:
2017-06-12 - 期刊:
- 影响因子:0
- 作者:
Zuochao Dou;Issa M. Khalil;Abdallah Khreishah - 通讯作者:
Abdallah Khreishah
Universal opportunistic routing scheme using network coding
使用网络编码的通用机会路由方案
- DOI:
10.1109/secon.2012.6275797 - 发表时间:
2012-06-18 - 期刊:
- 影响因子:0
- 作者:
Abdallah Khreishah;Issa M. Khalil;Jie Wu - 通讯作者:
Jie Wu
Efficient 3D placement of a UAV using particle swarm optimization
使用粒子群优化对无人机进行高效 3D 放置
- DOI:
10.1109/iacs.2017.7921981 - 发表时间:
2017-04-04 - 期刊:
- 影响因子:0
- 作者:
Hazim Shakhatreh;Abdallah Khreishah;A. Alsarhan;Issa M. Khalil;Ahmad H. Sawalmeh;Noor Shamsiah Othman - 通讯作者:
Noor Shamsiah Othman
Abdallah Khreishah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abdallah Khreishah', 18)}}的其他基金
REU Site: Optics and photonics: Technologies, Systems, and Devices
REU 网站:光学和光子学:技术、系统和设备
- 批准号:
1852375 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
REU Site: Optics and photonics: Technologies, Systems, and Devices
REU 网站:光学和光子学:技术、系统和设备
- 批准号:
1560131 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Coexistence of Directional Communications within 5G Networks: The Case for Visible Light Enhanced Small-Cells
NeTS:小型:协作研究:5G 网络内定向通信的共存:可见光增强型小型蜂窝的案例
- 批准号:
1617924 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CCSS: An Architecture for Joint Integration of Inter and Intrasession Network Coding in Lossy Wireless Multihop Networks
CCSS:有损无线多跳网络中会话间和会话内网络编码联合集成的架构
- 批准号:
1331018 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CCSS: An Architecture for Joint Integration of Inter and Intrasession Network Coding in Lossy Wireless Multihop Networks
CCSS:有损无线多跳网络中会话间和会话内网络编码联合集成的架构
- 批准号:
1128209 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
- 批准号:52376132
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向刻蚀工艺的脉冲调制甚高频容性耦合等离子体的点燃物理
- 批准号:12275043
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
激光诱导空气和薄膜等离子体点燃机理及损伤误判消除方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低温压缩氢射流及点燃的实验和理论模型研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
缸内直喷甲醇的重型点燃式天然气双燃料发动机协同燃烧调控机理研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
US Ignite: Focus Area 1: An Integrated Reconfigurable Control and Self-Organizing Communication Framework for Advanced Community Resilience Microgrids
US Ignite:重点领域 1:用于高级社区弹性微电网的集成可重构控制和自组织通信框架
- 批准号:
1915756 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
US Ignite: Focus Area 1: SD2N: Software-Defined Urban Distribution Network for Smart Cities
US Ignite:重点领域 1:SD2N:智慧城市的软件定义城市配电网络
- 批准号:
2006828 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
US Ignite: Focus Area 1: A Networked Virtual Reality Platform for Immersive Online Social Learning of Youth with Autism Spectrum Disorders
US Ignite:重点领域 1:为患有自闭症谱系障碍的青少年提供沉浸式在线社交学习的网络虚拟现实平台
- 批准号:
1647213 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
US Ignite: Collaborative Research: Focus Area 1: Fiber Network for Smart Mapping, Monitoring and Managing Underground Urban Infrastructure
US Ignite:合作研究:重点领域 1:用于智能测绘、监控和管理地下城市基础设施的光纤网络
- 批准号:
1647095 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
US Ignite: Focus Area 1: An Integrated Reconfigurable Control and Self-Organizing Communication Framework for Advanced Community Resilience Microgrids
US Ignite:重点领域 1:用于高级社区弹性微电网的集成可重构控制和自组织通信框架
- 批准号:
1647135 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant