NSFGEO-NERC: Multiscale Stochastic Modeling and Analysis of the Ocean Circulation
NSFGEO-NERC:海洋环流的多尺度随机建模与分析
基本信息
- 批准号:1658357
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2020-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Turbulent oceanic flows consist of complex motions - jets, vortices and waves that co-exist on very different spatio-temporal scales but also without clear scale separation. Along with computational challenges to simulate multiscale oceanic circulation in high numerical resolution, as well as resulting difficulties in dynamically and kinematical understanding of multiscale flows, naturally goes practical need to develop prognostic models of reduced complexity that reproduce the whole complexity of turbulent oceanic motions across scales. This project aims to develop such reduced-order stochastic models by dynamical, i.e., equations-based as well as statistical data-driven reduction methods, describing the evolution of relatively few (from tens to hundreds) spatio-temporal modes and capturing essential statistical properties of the underlying multiscale oceanic flow and stratification. It will combine development and applications of state-of-the-art data-adaptive methods and rigorous mathematical theory for dynamical and empirical reduction in the hierarchy of oceanic models. The methods to be developed in this project are very general and can be easily extended to other problems in fluid mechanics and geophysical flows. The reduced-order stochastic models that emulate the turbulent flows in a coarse-grained sense can be adopted as efficient and low-cost oceanic components of general circulation models that could improve quantitative prediction of climate change. The Project will foster a USA-UK research collaboration and provide opportunities for cross-training in an international setting. The UK collaborator will recruit a PhD student via the EPSRC Centre for Doctoral Training "Mathematics of Planet Earth" at the Imperial College to work on development and applications of stochastic reduced-order ocean models.This Project aims to develop versatile and novel methods for constructing stochastic oceanic emulators of reduced complexity, based either on high-end model simulations or on underlying dynamical equations, or both, and for capturing oceanic variability across scales, i.e., from large-scale decadal variability to mesoscale eddies, and resulting dynamical and kinematical understanding of multiscale flows. The goals of this Project are (i) to extend recent theoretical results and to emulate the full spectrum of dynamically important scales including mesoscale eddies; (ii) to demonstrate that the stochastic flow emulators can provide fundamental novel insights into dynamical and kinematical properties of the multiscale transient flow patterns and their interactions, and to search for dynamical interpretations of mode interactions; (iii) to extend empirical and dynamical reduction methods to spatially inhomogeneous and turbulent flows; (iv) to consider several types of dynamically simulated eddying multiscale flows of the ocean circulation in the hierarchy of oceanic models of different complexity and geography, such as anisotropic turbulence on zonal currents and wind-driven gyres with western boundary currents, (v) to embed the stochastic flow emulators into non-eddy-resolving dynamical oceanic models as effective parameterizations of the eddy effects.
湍流的海洋流由复杂的运动组成 - 喷气机,涡流和波浪,它们在非常不同的时空尺度上并存,但也没有明确的尺度分离。除了在高数值分辨率中模拟多尺度海洋循环的计算挑战外,以及对多尺度流动的动态和运动学理解的困难,自然而然地需要实用,以发展降低复杂性的预后模型,从而重现跨尺度湍流海洋运动的全部复杂性。该项目旨在通过动力学,即基于方程式的以及统计数据驱动的还原方法来开发此类减少的随机模型,描述了相对较少(从数十个到数百个)时空模式的演变,并捕获了基础多盘流和分层的基本统计特性。它将结合最先进的数据自适应方法的开发和应用,以及在海洋模型层次结构中的动力学和经验降低的严格数学理论。该项目中要开发的方法非常笼统,可以很容易地扩展到流体力学和地球物理流中的其他问题。在粗粒感中模仿湍流的减少顺序随机模型可以用作一般循环模型的有效和低成本的海洋成分,可以改善对气候变化的定量预测。该项目将促进美国-UK研究的合作,并在国际环境中为交叉培训提供机会。 The UK collaborator will recruit a PhD student via the EPSRC Centre for Doctoral Training "Mathematics of Planet Earth" at the Imperial College to work on development and applications of stochastic reduced-order ocean models.This Project aims to develop versatile and novel methods for constructing stochastic oceanic emulators of reduced complexity, based either on high-end model simulations or on underlying dynamical equations, or both, and for capturing oceanic variability across从大规模衰老变异到中尺度的涡流,以及对多尺度流的动力学和运动学理解,尺度。该项目的目标是(i)扩展最新的理论结果,并模仿包括中尺度涡流在内的全部动态重要尺度; (ii)证明随机流仿真器可以为多尺度瞬态流动模式及其相互作用的动力学和运动学特性提供基本的新颖见解,并寻找模式相互作用的动态解释; (iii)将经验和动态还原方法扩展到空间不均匀和湍流; (iv)在海洋循环中考虑几种动态模拟的涡流多尺度流动,以不同的复杂性和地理位置的海洋模型层次结构,例如在区域电流上的各向异性湍流和与西部边界电流的风向驱动的陀螺仪(V)(V),(V)将仿真的仿真型模型嵌入了无效的洋流效应,可有效地分配到有效的洋流效应中。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-adaptive harmonic decomposition and prediction of Arctic sea ice extent
北极海冰范围的数据自适应调和分解与预测
- DOI:10.1093/climsys/dzy001
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Kondrashov, Dmitri;Chekroun, Mickaël D;Ghil, Michael
- 通讯作者:Ghil, Michael
Data-adaptive harmonic analysis and modeling of solar wind-magnetosphere coupling
太阳风-磁层耦合的数据自适应谐波分析和建模
- DOI:10.1016/j.jastp.2017.12.021
- 发表时间:2018
- 期刊:
- 影响因子:1.9
- 作者:Kondrashov, Dmitri;Chekroun, Mickaël D.
- 通讯作者:Chekroun, Mickaël D.
On data-driven augmentation of low-resolution ocean model dynamics
低分辨率海洋模型动力学的数据驱动增强
- DOI:10.1016/j.ocemod.2019.101464
- 发表时间:2019
- 期刊:
- 影响因子:3.2
- 作者:Ryzhov, E.A.;Kondrashov, D.;Agarwal, N.;Berloff, P.S.
- 通讯作者:Berloff, P.S.
Topological instabilities in families of semilinear parabolic problems subject to nonlinear perturbations
受非线性扰动的半线性抛物型问题族中的拓扑不稳定性
- DOI:10.3934/dcdsb.2018075
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:D. Chekroun, Mickaël
- 通讯作者:D. Chekroun, Mickaël
Data-adaptive harmonic spectra and multilayer Stuart-Landau models
- DOI:10.1063/1.4989400
- 发表时间:2017-09-01
- 期刊:
- 影响因子:2.9
- 作者:Chekroun, Mickael D.;Kondrashov, Dmitri
- 通讯作者:Kondrashov, Dmitri
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitri Kondrashov其他文献
Dmitri Kondrashov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitri Kondrashov', 18)}}的其他基金
Collaborative Research: GEM--Towards Developing Physics-informed Subgrid Models for Geospace MagnetoHydroDynamics (MHD) Simulations
合作研究:GEM——开发用于地球空间磁流体动力学 (MHD) 模拟的物理信息子网格模型
- 批准号:
2247677 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
EAGER: Machine Learning and Data Assimilation for Discovery of Generalized Fokker-Planck Equation for Radiation Belt Modeling
EAGER:用于发现辐射带建模的广义福克-普朗克方程的机器学习和数据同化
- 批准号:
2211345 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: EaSM 2: Stochastic Simulation and Decadal Prediction of Large-Scale Climate
合作研究:EaSM 2:大尺度气候的随机模拟和年代际预测
- 批准号:
1243175 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Gap Filling of Solar Wind Data by Singular Spectrum Analysis
通过奇异谱分析填补太阳风数据的间隙
- 批准号:
1102009 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似海外基金
NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
- 批准号:
NE/X000656/1 - 财政年份:2025
- 资助金额:
$ 60万 - 项目类别:
Research Grant
NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
- 批准号:
NE/Z000246/1 - 财政年份:2025
- 资助金额:
$ 60万 - 项目类别:
Research Grant
NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
- 批准号:
NE/Z000254/1 - 财政年份:2025
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317936 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant