CRII: SHF: Understanding The Role of Software Test Adequacy Criteria in Search-Based Test Generation

CRII:SHF:了解软件测试充分性标准在基于搜索的测试生成中的作用

基本信息

  • 批准号:
    1657299
  • 负责人:
  • 金额:
    $ 17.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-02-01 至 2020-01-31
  • 项目状态:
    已结题

项目摘要

Software testing ensures that software is robust and reliable. As testers cannot know what faults exist apriori, dozens of metrics---ranging from the measurement of structural coverage to the detection of synthetic faults---have been proposed to judge test case adequacy. In theory, if such metrics are fulfilled, tests should be adequate at detecting faults. To alleviate the high cost of testing, optimization algorithms can be used to automatically generate test suites. These adequacy metrics are well-suited for guiding automated test creation. However, there is no adequacy metric known to universally correspond to "effective fault detection.'' Testers are left with a bewildering number of testing options, and there is little guidance on when to use one criterion over another. These metrics are a solid starting point for test case generation. Many faults cannot be detected until the code has been executed. However, merely executing code does not ensure adequate testing. How code is executed is important. It is clear that testers do not yet understand which adequacy metrics actually correspond to a high probability of fault detection, or under what situations these metrics can be applied.Therefore, it is clear that improving automated test generation requires gaining a better understanding of the circumstances where particular metrics are effective, isolating the features of such metrics that correlate to fault detection in such circumstances, and establishing and evaluating guidelines for the use and combination of metrics - perhaps tied to particular system types or domains - that will result in real-world fault detection. Large-scale empirical investigations will be performed into the nature of the relationship between adequacy criteria and the probability of fault detection in order to understand the efficacy and applicability of the criteria that are used to guide test creation. This work will have broader impacts on industrial practices, software engineering education, and - through dissemination to and collaborations with industrial partners and regulatory agencies - public safety and security.
软件测试可确保软件坚固且可靠。由于测试人员不知道存在哪些故障,因此已经提出了数十个指标,从结构覆盖率的测量到检测合成断层,已提议判断测试案例的适当性。从理论上讲,如果实现此类指标,则应在检测故障时进行足够的测试。为了减轻高测试成本,可以使用优化算法自动生成测试套件。这些充分度指标非常适合指导自动测试创建。然而,没有足够的指标已知与“有效的故障检测”相对应。测试人员留下了令人困惑的测试选项数量,几乎没有关于何时使用一个标准对另一个标准使用的指导。这些指标是测试案例生成的可靠起点。但是,要确保执行量的代码,无法检测到许多故障。但是,要执行计算。尚不了解哪种适度指标实际上与故障检测的高可能性相对应,或者在哪些情况下可以应用这些指标,可以应用这些指标。因此,很明显,改善自动化测试生成需要更好地理解特定指标有效的情况,以隔离和建立的指南的特定指南和组合的特定特征 - 在此类情况下进行介绍 - 隔离和组合的序列 - 并在此类情况下进行介绍 - 并在此类情况下进行介绍,并隔离了这些指南的组合。系统类型或域 - 这将导致实际故障检测。为了了解用于指导测试创建的标准的功效和适用性,将对充分性标准与故障检测的可能性之间的关系性质进行大规模的实证研究。这项工作将对工业实践,软件工程教育以及与工业合作伙伴和监管机构的合作进行更广泛的影响 - 公共安全和保障。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
To Call, or Not to Call: Contrasting Direct and Indirect Branch Coverage in Test Generation
Detecting Real Faults in the Gson Library Through Search-Based Unit Test Generation
通过基于搜索的单元测试生成检测 Gson 库中的真实故障
Generating Effective Test Suites by Combining Coverage Criteria
One-Size-Fits-None? Improving Test Generation Using Context-Optimized Fitness Functions
一刀切——没有?
Learning How to Search: Generating Exception-Triggering Tests Through Adaptive Fitness Function Selection
学习如何搜索:通过自适应适应度函数选择生成异常触发测试
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hussein Almulla, Gregory Gay
  • 通讯作者:
    Hussein Almulla, Gregory Gay
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Gay其他文献

How Do Different Types of Testing Goals Affect Test Case Design?
不同类型的测试目标如何影响测试用例设计?
  • DOI:
    10.1007/978-3-031-43240-8_7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dia Istanbuly;Max Zimmer;Gregory Gay
  • 通讯作者:
    Gregory Gay
Test Maintenance for Machine Learning Systems: A Case Study in the Automotive Industry
机器学习系统的测试维护:汽车行业的案例研究
Challenges in Using Search-Based Test Generation to Identify Real Faults in Mockito
使用基于搜索的测试生成来识别 Mockito 中的真实故障的挑战
Automatically finding the control variables for complex system behavior
自动寻找复杂系统行为的控制变量

Gregory Gay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EGFR/GRβ/Shf调控环路在胶质瘤中的作用机制研究
  • 批准号:
    81572468
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

SHF: Small: Little Tricky Logics: Misconceptions in Understanding Logics and Formal Properties
SHF:小:小棘手的逻辑:理解逻辑和形式属性的误解
  • 批准号:
    2227863
  • 财政年份:
    2023
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
SHF: Small: Understanding and Exploiting Software Defined Networks (SDN) in High Performance Computing (HPC) Environments
SHF:小型:理解和利用高性能计算 (HPC) 环境中的软件定义网络 (SDN)
  • 批准号:
    2007827
  • 财政年份:
    2020
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Understanding and Evolving Search-based Software Improvement
SHF:小型:协作研究:理解和发展基于搜索的软件改进
  • 批准号:
    1908633
  • 财政年份:
    2019
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Understanding and Evolving Search-based Software Improvement
SHF:小型:协作研究:理解和发展基于搜索的软件改进
  • 批准号:
    1908233
  • 财政年份:
    2019
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
SHF:Small: Collaborative Research: Understanding, Modeling, and System Support for HPC Data Reduction
SHF:Small:协作研究:HPC 数据缩减的理解、建模和系统支持
  • 批准号:
    1813081
  • 财政年份:
    2018
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了