Collaborative Research: Uncertainty in Antarctic Climate Change Projections and the Role of Sea Ice, Clouds and Ocean Structure
合作研究:南极气候变化预测的不确定性以及海冰、云和海洋结构的作用
基本信息
- 批准号:1643484
- 负责人:
- 金额:$ 26.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Climate change in Antarctica and the Southern Ocean has major societal impacts in terms of global sea level rise, carbon storage into the ocean, and heat transport. The project goal of this study is to systematically assess the influence of long-standing atmospheric radiation and ocean structure components on the modelled climate of Antarctica and the Southern Ocean, using a state-of-the-art community climate model (CESM). The project will be co-led by female PIs at the University of Colorado (CU) and National Center for Atmospheric Research (NCAR), and will support the training and mentoring of a new graduate student at CU, and a science communication postdoc. Because public understanding of these issues can be very low, the project includes a substantial outreach and science communication component. An interactive museum display demonstrating the interpretation and implications of trends and variability in Antarctic sea ice will be developed, along with provision of training for K-12 educators nationwide that focuses on using the display, or a web variant.Large uncertainties in projected anthropogenic climate change impacts are related to Antarctica and the Southern Ocean. Projected changes in Antarctic surface mass balance, sea ice extent, and surface temperature differ widely amongst current-generation climate models. Such uncertainties likely have roots in the mean states (climatologies) of different models. Recent observational and modeling evidence has implicated ocean mean-state biases in particular for the general inability of climate models to simulate trends in annual Antarctic sea ice extent observed by remote sensing. Ocean biases may be driven in part by a long-standing bias in absorbed shortwave radiation over the Southern Ocean. The primary project goal is to systematically assess the influence of long-standing atmospheric radiation and ocean structure biases on the modelled climate of Antarctica and the Southern Ocean, using a state-of-the-art community climate model (CESM). It is anticipated that the mean state (climatology) bias reductions will alter the response of sea ice extent and volume, air temperature, precipitation, surface mass balance, and sea level rise to anthropogenic forcing. Proposed climate modeling experiments, together with existing numerical simulation experiments, will enable a more thorough and systematic assessment of the impact of mean-state biases on the simulation of climate variability and change across Antarctica and the Southern Ocean than has been previously possible.
南极洲和南大洋的气候变化在全球海平面上升、海洋碳储存和热量传输方面具有重大社会影响。本研究的项目目标是使用最先进的社区气候模型(CESM)系统评估长期大气辐射和海洋结构成分对南极洲和南大洋模拟气候的影响。该项目将由科罗拉多大学 (CU) 和国家大气研究中心 (NCAR) 的女性 PI 共同领导,并将支持 CU 一名新研究生和一名科学传播博士后的培训和指导。 由于公众对这些问题的了解可能非常低,因此该项目包括大量的外展和科学传播部分。将开发一个交互式博物馆展示,展示南极海冰趋势和变化的解释和影响,同时为全国 K-12 教育工作者提供侧重于使用展示或网络变体的培训。 预测的人为气候存在很大的不确定性变化影响与南极洲和南大洋有关。当前一代气候模型对南极表面质量平衡、海冰范围和表面温度的预测变化存在很大差异。这种不确定性可能根源于不同模型的平均状态(气候学)。最近的观测和建模证据表明海洋平均状态存在偏差,特别是气候模型普遍无法模拟遥感观测到的每年南极海冰范围的趋势。海洋偏差可能部分是由南大洋吸收短波辐射的长期偏差造成的。项目的主要目标是使用最先进的社区气候模型(CESM)系统评估长期大气辐射和海洋结构偏差对南极洲和南大洋模拟气候的影响。预计平均状态(气候学)偏差的减少将改变海冰范围和体积、气温、降水、表面质量平衡和海平面上升对人为强迫的响应。拟议的气候建模实验与现有的数值模拟实验相结合,将能够比以前更全面、更系统地评估平均状态偏差对南极洲和南大洋气候变率和变化模拟的影响。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved clouds over Southern Ocean amplify Antarctic precipitation response to ozone depletion in an earth system model
南大洋上空云层的改善放大了地球系统模型中南极降水对臭氧消耗的响应
- DOI:10.1007/s00382-020-05346-8
- 发表时间:2020-09
- 期刊:
- 影响因子:4.6
- 作者:Schneider, David P.;Kay, Jennifer E.;Lenaerts, Jan
- 通讯作者:Lenaerts, Jan
An Overview of Antarctic Sea Ice in the Community Earth System Model version 2, Part I: Analysis of the Seasonal Cycle in the Context of Sea Ice Thermodynamics and Coupled Atmosphere‐Ocean‐Ice Processes
社区地球系统模型第二版中的南极海冰概述,第一部分:海冰热力学和大气-海洋-冰耦合过程背景下的季节循环分析
- DOI:10.1029/2020ms002143
- 发表时间:2020-01
- 期刊:
- 影响因子:6.8
- 作者:Singh, Hansi K.;Landrum, Laura;Holland, Marika M.;Bailey, David A.;DuVivier, Alice K.
- 通讯作者:DuVivier, Alice K.
An Assessment of the Temporal Variability in the Annual Cycle of Daily Antarctic Sea Ice in the NCAR Community Earth System Model, Version 2: A Comparison of the Historical Runs With Observations
NCAR 社区地球系统模型中每日南极海冰年度循环的时间变化评估,版本 2:历史运行与观测的比较
- DOI:10.1002/essoar.10503305.1
- 发表时间:2020-06-10
- 期刊:
- 影响因子:0
- 作者:M. Raphael;M. H;cock;cock;M. Holl;L. L;rum;rum
- 通讯作者:rum
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clara Deser其他文献
Contrary Responses of the Gulf Stream and the Kuroshio to Arctic Sea Ice Loss
墨西哥湾流和黑潮对北极海冰损失的相反反应
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.9
- 作者:
Kun Wang;Linyue Wu;Haiwen Liu;Bo Dan;Haijin Dai;Clara Deser - 通讯作者:
Clara Deser
Clara Deser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clara Deser', 18)}}的其他基金
Collaborative Research: Reconstruction and Understanding of Antarctic Circulation Variability and Trends since 1905
合作研究:1905年以来南极环流变化和趋势的重建和理解
- 批准号:
1341527 - 财政年份:2014
- 资助金额:
$ 26.88万 - 项目类别:
Standard Grant
The Seasonal Atmospheric Circulation and Climate Response to Arctic Sea Ice Loss: Mechanisms and Robustness across Models
季节性大气环流和气候对北极海冰损失的响应:各模型的机制和稳健性
- 批准号:
1203539 - 财政年份:2012
- 资助金额:
$ 26.88万 - 项目类别:
Standard Grant
An Informed Guide to Climate Data Sets with Relevance to Earth System Model Evaluation
与地球系统模型评估相关的气候数据集知情指南
- 批准号:
1048899 - 财政年份:2011
- 资助金额:
$ 26.88万 - 项目类别:
Standard Grant
Applying Ice Cores, Instrumental Climate Records and Climate Modeling Towards a Mechanistic Understanding of Antarctic Climate Variability on Interannual to Multidecadal Time Scale
应用冰芯、仪器气候记录和气候模型对南极气候年际至数十年时间尺度变化的机制进行理解
- 批准号:
0838871 - 财政年份:2009
- 资助金额:
$ 26.88万 - 项目类别:
Standard Grant
Collaborative Research: The Seasonal Response of the Arctic and Global Climate System to Projected Sea Ice Loss within the Context of GHG-induced Climate Change
合作研究:在温室气体引起的气候变化背景下,北极和全球气候系统对预计海冰消失的季节响应
- 批准号:
0902065 - 财政年份:2009
- 资助金额:
$ 26.88万 - 项目类别:
Standard Grant
Climate Response to Future Changes in Arctic Snow Cover and Sea Ice: A New Perspective from the High-Resolution NCAR CCSM3
气候对北极积雪和海冰未来变化的响应:高分辨率 NCAR CCSM3 的新视角
- 批准号:
0629300 - 财政年份:2006
- 资助金额:
$ 26.88万 - 项目类别:
Standard Grant
相似国自然基金
认知不确定功率源并网电力系统潮流评估理论方法研究
- 批准号:52307129
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多源不确定性数据驱动的深水集输系统一体化状态监测研究
- 批准号:62373277
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多维度不确定性驱动的弱目标分割方法研究
- 批准号:62376189
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
模型不确定约束下分布式无人机蜂群跟踪方法研究
- 批准号:62373112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
应对多重不确定性的区域综合能源系统分布渐进调度理论研究
- 批准号:52377108
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 26.88万 - 项目类别:
Continuing Grant
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
- 批准号:
2343727 - 财政年份:2024
- 资助金额:
$ 26.88万 - 项目类别:
Continuing Grant
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
- 批准号:
2343728 - 财政年份:2024
- 资助金额:
$ 26.88万 - 项目类别:
Continuing Grant
Transfer learning leveraging large-scale transcriptomics to map disrupted gene networks in cardiovascular disease
利用大规模转录组学的转移学习来绘制心血管疾病中被破坏的基因网络
- 批准号:
10696753 - 财政年份:2023
- 资助金额:
$ 26.88万 - 项目类别:
Collaborative Research: DMS/NIGMS 1: Identifiability investigation of Multi-scale Models of Infectious Diseases
合作研究:DMS/NIGMS 1:传染病多尺度模型的可识别性研究
- 批准号:
10794480 - 财政年份:2023
- 资助金额:
$ 26.88万 - 项目类别: