Conference Proposal: Semester on KPZ Universality and Directed Polymers
会议提案:KPZ 通用性和定向聚合物学期
基本信息
- 批准号:1656377
- 负责人:
- 金额:$ 4.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Semester on KPZ Universality and Directed Polymers will be hosted at the Centre International de Rencontres Mathematiques, in Luminy, France, from February 1 to July 31, 2017. The purpose of the programme is to bring together leading researchers from around the world to strengthen our understanding of KPZ universality. This is one of the most active areas of statistical mechanics and mathematical physics in the last ten years that is focused on studying the extremes of highly correlated random systems. Remarkably, the statistics governing the extremes appear to be universal regardless of the particular system under consideration, although thus far this has only been understood for very specific systems. The main focus of the program is to understand the unifying mechanism behind the universality, motivated by examples from directed polymer models. This will be done in an interdisciplinary manner using ideas from statistical mechanics, probability theory, dynamical systems, and partial differential equations. The intellectual merit of the semester lies in its potential to establish a cross-fertilization of ideas within different areas of mathematics and connect these ideas with theoretical physics and other fields of science. Broader impact will be realized via this exchange of ideas across disciplines and through the training of a new generation of students to carry on the work in this important field.In addition to enabling long-term collaborations between leading researchers, the semester will allow for the dissemination of new results with a conference on Qualitative Methods in KPZ Universality (April 24-27, 2017) and a small groups meeting on Random Walks in Random Environments (March 13-17, 2017).There will also be a research school on Random Structures in Statistical Mechanics and Mathematical Physics (March 6-10, 2017) aimed at introducing graduate students and other junior researchers to this exciting new field. Funds from this proposal will enable the participation of United States based students and junior researchers in these programs. Conference website: khanin-shlosman.weebly.com
KPZ 普适性和定向聚合物学期将于 2017 年 2 月 1 日至 7 月 31 日在法国卢米尼国际数学竞赛中心举办。该项目的目的是汇集来自世界各地的领先研究人员,以加强我们对 KPZ 普遍性的理解。这是过去十年来统计力学和数学物理最活跃的领域之一,专注于研究高度相关随机系统的极端情况。值得注意的是,无论所考虑的特定系统如何,控制极端情况的统计数据似乎都是普遍的,尽管到目前为止这仅针对非常特定的系统而被理解。该计划的主要重点是通过定向聚合物模型的示例来了解普遍性背后的统一机制。这将以跨学科的方式利用统计力学、概率论、动力系统和偏微分方程的思想来完成。本学期的智力价值在于它有可能在数学的不同领域内建立思想的交叉传播,并将这些思想与理论物理学和其他科学领域联系起来。通过跨学科的思想交流以及培训新一代学生在这一重要领域开展工作,将实现更广泛的影响。除了促进领先研究人员之间的长期合作外,本学期还将允许通过 KPZ 普遍性定性方法会议(2017 年 4 月 24 日至 27 日)和随机环境中随机游走小组会议(2017 年 3 月 13 日至 17 日)传播新结果2017)。还将设立一个统计力学和数学物理随机结构研究学院(2017年3月6日至10日),旨在向研究生和其他初级研究人员介绍这个令人兴奋的新领域。该提案的资金将使美国的学生和初级研究人员能够参与这些项目。会议网站:khanin-shlosman.weebly.com
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Alberts其他文献
Thomas Alberts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Alberts', 18)}}的其他基金
Seminar on Stochastic Processes 2019
2019年随机过程研讨会
- 批准号:
1850630 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Standard Grant
Conference Proposal: Random Conformal Geometry and Related Fields
会议提案:随机共形几何及相关领域
- 批准号:
1806979 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Standard Grant
Stochastic Analysis of Random Multifractal Measures
随机多重分形测量的随机分析
- 批准号:
1811087 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Standard Grant
Conference Proposal: Conference Grant Application for Thematic Programme on Random Geometry
会议提案:随机几何专题项目会议拨款申请
- 批准号:
1502404 - 财政年份:2015
- 资助金额:
$ 4.95万 - 项目类别:
Standard Grant
Engineering Creativity Award: Piezoelectric Damping of Flexible Structures
工程创意奖:柔性结构的压电阻尼
- 批准号:
9196093 - 财政年份:1991
- 资助金额:
$ 4.95万 - 项目类别:
Standard Grant
Engineering Creativity Award: Piezoelectric Damping of Flexible Structures
工程创意奖:柔性结构的压电阻尼
- 批准号:
8811633 - 财政年份:1988
- 资助金额:
$ 4.95万 - 项目类别:
Standard Grant
相似国自然基金
指向提议者的共情关怀对第三方惩罚行为的影响:心理、脑与计算机制
- 批准号:32371102
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济博弈中提议者对先前第三方干预者的分配公平性研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于深度层次特征相似性度量的视觉跟踪方法研究
- 批准号:61773397
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
构造类型专家系统及其开发工具的研究
- 批准号:68875006
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Proposal of renovation of mathematics education through the research of educational curriculum of "Wasan" in the Edo period
通过江户时代“和三”教育课程的研究革新数学教育的提案
- 批准号:
18K18671 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A survey of perceptions of geological concepts of time and space, and a proposal of teaching methods for acquiring these concepts
对时间和空间地质概念认知的调查以及获取这些概念的教学方法的建议
- 批准号:
18K02595 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A proposal for physical activity and sedentary behavior that contributes to health promotion among pregnant women: a multicenter cohort study
关于有助于孕妇健康促进的身体活动和久坐行为的建议:一项多中心队列研究
- 批准号:
17K13233 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Proposal of Sediment Disaster Warning Standards Focusing on Reducing Missing Rate Based on Practical Research
基于实践研究提出以降低漏报率为重点的泥沙灾害预警标准
- 批准号:
17K01335 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Proposal of Easy and Advanced Nonlinear Analysis method by Particle Swarm Optimization
通过粒子群优化提出简单和高级的非线性分析方法
- 批准号:
16K16124 - 财政年份:2016
- 资助金额:
$ 4.95万 - 项目类别:
Grant-in-Aid for Young Scientists (B)