CAREER: Control theoretic approaches for dynamic and privacy preserving distributed optimization algorithms

职业:动态和隐私保护分布式优化算法的控制理论方法

基本信息

  • 批准号:
    1653838
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-03-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Networked systems have undergone advances toward providing efficient solutions to many challenging problems in the modern world. Smart grid operations, smart transportation, and smart healthcare are just a few such networked operations that are envisioned to help us manage our resources efficiently using smarter interactions among their subsystems. However, optimally benefiting from these networked systems will require efficient operational algorithms, many of which involve in-network static or dynamic optimal decision-making. Effective solutions for such algorithms need to be distributed and implementable within the limitations inherent in communication devices. Furthermore, in many applications, these solutions also must have transparent privacy preservation properties to make them acceptable for everyday use. This proposal's research objective is to investigate how automatic control-theoretic tools can be used to develop and analyze distributed dynamic optimization algorithms that respect the restrictions inherent to communication channels and address concerns regarding privacy preservation of participating agents in smart network operation. The results of this research will facilitate the realization and adoption of optimal in-network solutions in many important cyber-physical applications, such as smart grid, sensor networks, and distributed data regression in the healthcare and banking sectors. This project research will be complemented by a multi-tiered educational, mentoring, and outreach plan to train and motivate the next generation of experts who will solve problems that will emerge along with the new paradigms of smart networked systems. The research will be integrated into the University of California, Irvine curriculum through three main avenues: (1) developing new graduate and undergraduate courses, (2) involving students in the PI's Cooperative Systems Lab, and (3) mentoring efforts at the college and high school levels.This project will significantly expand the current state of knowledge on distributed solutions for in-network dynamic optimization algorithm design in three separate directions: design techniques, efficient communication, and transparent privacy preservation characteristics. In terms of design techniques, the proposal will showcase a systematic distributed algorithm design using two time-scale dynamical system concepts from singular perturbation theory. For a robust, active, and smarter communication strategy, event-triggered communication approaches will be used to enable each agent to locally decide when it is necessary to communicate in order to preserve the algorithm's integrity. Finally, to achieve transparent privacy preservation, this project will include development of observability tests to identify a knowledge set that enables eavesdroppers to construct the private data of other agents in the network using sophisticated observers, such as neuro-observers. The project will also include design of solutions for resistance of these intrusions by developing tools and methods to create augmentations that induce privacy preservation in distributed dynamic optimization algorithms.
网络系统在为现代世界中许多具有挑战性的问题提供有效的解决方案方面取得了长足的进步。智能电网运营、智能交通和智能医疗只是此类网络运营中的几个例子,这些网络运营旨在帮助我们利用子系统之间更智能的交互来有效地管理资源。然而,要从这些网络系统中获得最佳效益,需要高效的操作算法,其中许多涉及网络内静态或动态最佳决策。此类算法的有效解决方案需要在通信设备固有的限制内进行分发和实施。此外,在许多应用中,这些解决方案还必须具有透明的隐私保护特性,以使其适合日常使用。该提案的研究目标是研究如何使用自动控制理论工具来开发和分析分布式动态优化算法,该算法尊重通信通道固有的限制,并解决智能网络操作中参与代理的隐私保护问题。这项研究的结果将有助于在许多重要的网络物理应用中实现和采用最佳的网络内解决方案,例如智能电网、传感器网络以及医疗保健和银行领域的分布式数据回归。该项目研究将得到多层次的教育、指导和推广计划的补充,以培训和激励下一代专家,他们将解决随着智能网络系统新范式出现的问题。该研究将通过三个主要途径纳入加州大学欧文分校的课程:(1)开发新的研究生和本科生课程,(2)让学生参与 PI 的合作系统实验室,以及(3)学院和学院的指导工作。该项目将在三个不同的方向上显着扩展网络内动态优化算法设计分布式解决方案的知识现状:设计技术、高效通信和透明的隐私保护特性。在设计技术方面,该提案将展示使用奇异摄动理论中的两个时间尺度动力系统概念的系统分布式算法设计。为了实现稳健、主动且更智能的通信策略,将使用事件触发的通信方法来使每个代理能够在本地决定何时需要进行通信,以保持算法的完整性。最后,为了实现透明的隐私保护,该项目将包括开发可观察性测试,以识别知识集,使窃听者能够使用复杂的观察者(例如神经观察者)构建网络中其他代理的私有数据。该项目还将包括通过开发工具和方法来设计抵抗这些入侵的解决方案,以创建增强功能,从而在分布式动态优化算法中诱导隐私保护。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Resolution Modeling of the Fastest First-Order Optimization Method for Strongly Convex Functions
Privacy preservation in a continuous-time static average consensus algorithm over directed graphs
有向图连续时间静态平均共识算法中的隐私保护
Learning Contraction Policies from Offline Data
  • DOI:
    10.1109/lra.2022.3145100
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Navid Rezazadeh;Maxwell Kolarich;Solmaz S. Kia;Negar Mehr
  • 通讯作者:
    Navid Rezazadeh;Maxwell Kolarich;Solmaz S. Kia;Negar Mehr
A Study on Accelerating Average Consensus Algorithms Using Delayed Feedback
Distributed optimal in-network resource allocation algorithm design via a control theoretic approach
  • DOI:
    10.1016/j.sysconle.2017.07.012
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Solmaz S. Kia
  • 通讯作者:
    Solmaz S. Kia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Solmaz Kia其他文献

Solmaz Kia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向在轨大型结构的空间机器人多机协同接管控制方法研究
  • 批准号:
    52305036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高速铁路信号控制系统网络安全威胁分析与态势预警研究
  • 批准号:
    62301461
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
温度刺激快速响应自润滑复合陶瓷的构筑及超高温水氧环境磨损主动控制研究
  • 批准号:
    52375215
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
柴达木盆地东缘山区古风影沙丘的释光年代学、演化过程与控制因素
  • 批准号:
    42371020
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
  • 批准号:
    62363022
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Information-Theoretic Approach to Turbulence: Causality, Modeling & Control
职业:湍流的信息理论方法:因果关系、建模
  • 批准号:
    2140775
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: New control-theoretic approaches for cyber-physical privacy
职业:网络物理隐私的新控制理论方法
  • 批准号:
    1846706
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Massive Uniform Manipulation: Algorithmic and Control Theoretic Foundations for Large Populations of Simple Robots Controlled by Uniform Inputs
职业:大规模均匀操纵:均匀输入控制的大量简单机器人的算法和控制理论基础
  • 批准号:
    1553063
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Design and Control of Wireless Networks on Network-Information-Theoretic Foundations
职业:基于网络信息理论基础的无线网络设计和控制
  • 批准号:
    1054738
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Control-Theoretic Techniques and Thermal/Power Modeling for Dynamically Managing Temperature and Power in Microprocessors
职业:用于动态管理微处理器中的温度和功率的控制理论技术和热/功率建模
  • 批准号:
    0133634
  • 财政年份:
    2002
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了