CAREER: On-Chip Terahertz Electronic Frequency Combs

职业:片上太赫兹电子频率梳

基本信息

  • 批准号:
    1653100
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-02-01 至 2022-01-31
  • 项目状态:
    已结题

项目摘要

Maintaining the exponential growth of electronic signal generation, sensing, and processing is essential to meet the new challenges of the upcoming era featuring ubiquitous sensors for healthcare, environment monitoring, autonomous vehicles/machines, etc. In particular, if the operating frequency of low-cost electronics can be extended into the terahertz (THz) regime, the unprecedented wide bandwidth will enable numerous new applications, such as non-ionizing imaging, molecular identification, high-resolution radar, and ultra-high-speed data link. Although in the past decade THz integrated circuits in silicon have improved remarkably in output power and efficiency, their reliance on high-quality-factor resonance makes the current THz sensors narrowband and fails to fully capitalize on the available broad spectrum for wide-range gas sensing and high-precision radar ranging. To break such a limit, this project investigates a new technique based on electronic THz frequency comb. Through parallel signal processing on the integrated circuit chip, gas sensor and imaging radar using the proposed technique will achieve significantly better spectral coverage and energy efficiency. This research effort will also be integrated with the principal investigator's educational career goal of promoting highly-interdisciplinary studies through the creation of new courses and engaging underrepresented and K-12 students through MIT's outreach programs.The objective of this proposal is to leverage the integration capability of the silicon semiconductor fabrication process and use THz frequency comb technique to distribute the signal-sensing load to an array of narrowband, precisely-controlled THz circuit units. It maintains high energy efficiency while covering a wide bandwidth in a scalable fashion. Sensors based on two types of THz frequency comb will be investigated under this program. First, a rotational-mode molecular sensor will be demonstrated using an evenly distributed frequency comb. The frequency comb will seamlessly cover more than 100 GHz of bandwidth and increase the spectral scanning speed of chip-scale THz spectrometer by a factor of 200. Through an on-chip frequency calibration technique, the spectrometer will scan the frequency spectrum with one-part-per-billion level frequency precision. Second, an imaging radar will be demonstrated using a non-uniform comb and compressive sensing. By quantizing the target distance with a set of nonlinearly distributed wavelengths and by using an error-correction algorithm, the radar can operate with low signal-to-noise ratio and low power consumption. The THz comb radar will also be integrated with a low-cost sensor array in a quasi-optical configuration, so that real-time 3D imaging with electronic scanning and fine resolution can be realized. Through these comprehensive studies, the program will establish the advantages of parallelism in chip-scale wide-band signal sensing and processing.
保持电子信号产生,传感和处理的指数增长对于应对即将到来的时代的新挑战至关重要非电离成像,分子识别,高分辨率雷达和超高速度数据链路。尽管在过去的十年中,硅的综合电路在输出功率和效率方面有了显着提高,但它们对高质量因素共振的依赖使当前的THZ传感器狭窄,并且无法完全利用可用的广泛频谱,以获得广泛的气体传感和高精度雷达范围。为了打破这样的极限,该项目研究了一种基于电子THZ频率梳子的新技术。通过提出的技术,通过集成电路芯片,气体传感器和成像雷达的并行信号处理将获得更好的光谱覆盖范围和能源效率。 This research effort will also be integrated with the principal investigator's educational career goal of promoting highly-interdisciplinary studies through the creation of new courses and engaging underrepresented and K-12 students through MIT's outreach programs.The objective of this proposal is to leverage the integration capability of the silicon semiconductor fabrication process and use THz frequency comb technique to distribute the signal-sensing load to an array of narrowband,精确控制的THZ电路单元。它保持高能效率,同时以可扩展的方式覆盖宽带宽度。根据该程序,将研究基于两种类型的THZ频率梳的传感器。首先,将使用均匀分布的频率梳子来证明旋转模式分子传感器。频率梳将无缝覆盖超过100 GHz的带宽,并将芯片尺度THZ光谱仪的光谱扫描速度提高200倍。通过芯片频率校准技术,光谱仪将以每四分之一的级别级别的频率精确扫描频谱。其次,将使用不均匀的梳子和压缩传感来证明成像雷达。通过使用一组非线性分布的波长量化目标距离,并使用误差校正算法,雷达可以以低信噪比和低功率消耗量进行操作。 THZ梳子雷达也将与低成本传感器阵列集成在准光学配置中,因此可以实现具有电子扫描和精细分辨率的实时3D成像。通过这些综合研究,该计划将在芯片尺度的宽带信号传感和处理中建立并行性的优势。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Energy-efficient terahertz electronics using multi-functional electromagnetism and high-parallelism architecture
采用多功能电磁学和高并行架构的节能太赫兹电子器件
A 220-to-320-GHz FMCW Radar in 65-nm CMOS Using a Frequency-Comb Architecture
采用频率梳架构、采用 65 nm CMOS 的 220 至 320 GHz FMCW 雷达
  • DOI:
    10.1109/jssc.2020.3020291
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Yi, Xiang;Wang, Cheng;Chen, Xibi;Wang, Jinchen;Grajal, Jesus;Han, Ruonan
  • 通讯作者:
    Han, Ruonan
Heterodyne Sensing CMOS Array with High Density and Large Scale: A 240-GHz, 32-Unit Receiver Using A De-Centralized Architecture
高密度、大规模外差传感 CMOS 阵列:采用分散式架构的 240 GHz、32 单元接收器
An on-chip fully electronic molecular clock based on sub-terahertz rotational spectroscopy
  • DOI:
    10.1038/s41928-018-0102-4
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    34.3
  • 作者:
    Cheng Wang;Xiang Yi;James Mawdsley;Mina Kim;Zihan Wang;R. Han
  • 通讯作者:
    Cheng Wang;Xiang Yi;James Mawdsley;Mina Kim;Zihan Wang;R. Han
A CMOS Molecular Clock Probing 231.061-GHz Rotational Line of OCS with Sub-PPB Long-Term Stability and 66-MW DC Power
具有亚 PPB 长期稳定性和 66 MW 直流功率的 CMOS 分子时钟探测 OCS 231.061 GHz 旋转线
  • DOI:
    10.1109/vlsic.2018.8502271
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Cheng;Yi, Xiang;Kim, Mina;Zhang, Yaqing;Han, Ruonan
  • 通讯作者:
    Han, Ruonan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruonan Han其他文献

Metal-Optic Nanophotonic Modulators in Standard CMOS Technology
标准 CMOS 技术中的金属光学纳米光子调制器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Elkabbash;Sivan Trajtenberg‐Mills;Isaac Harris;S. Bandyopadhyay;Mohamed I. Ibrahim;Archer Wang;Xibi Chen;Cole J. Brabec;Hasan Z. Yildiz;Ruonan Han;Dirk Englund
  • 通讯作者:
    Dirk Englund
Broadband Root-Mean-Square Detector in CMOS for On-Chip Measurements of Millimeter-Wave Voltages
用于毫米波电压片上测量的 CMOS 宽带均方根检测器
  • DOI:
    10.1109/led.2012.2190258
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Chuan Lee;Wooyeol Choi;Ruonan Han;H. Shichijo;K. O. Kenneth
  • 通讯作者:
    K. O. Kenneth
Cryo-CMOS Controller for Solid-State Color-Center Qubits Towards Scalable Quantum Processors
用于固态色心量子位的冷冻 CMOS 控制器迈向可扩展的量子处理器
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohamed I. Ibrahim;Ruonan Han
  • 通讯作者:
    Ruonan Han
The Pursuit of Practical Applications of THz CMOS Chips (Invited)
太赫兹CMOS芯片实际应用的追求(特邀)

Ruonan Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruonan Han', 18)}}的其他基金

EAGER SARE: Physical-Layer Security of THz Communication Using Orbital Angular Momentum and Rapid Frequency Hopping
EAGER SARE:使用轨道角动量和快速跳频的太赫兹通信物理层安全
  • 批准号:
    2028824
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF Workshop on Security in RF/Analog Microelectronics and Electromagnetics, October, 22-23, 2019 in Alexandria, VA.
NSF 射频/模拟微电子和电磁学安全研讨会,2019 年 10 月 22 日至 23 日在弗吉尼亚州亚历山大举行。
  • 批准号:
    1937994
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SpecEES: Tag-of-Everything: Secured Wireless Powering and Communication Using THz Spectrum for Ultra-Small, Package-Less ID Chips
SpecEES:一切标签:使用太赫兹频谱为超小型、无封装 ID 芯片提供安全的无线供电和通信
  • 批准号:
    1824360
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CMOS THz Molecular Clock With Enhanced Stability And Energy Efficiency
具有增强稳定性和能源效率的 CMOS 太赫兹分子时钟
  • 批准号:
    1809917
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

面向高性能计算的指令级自适应睿频加速芯片关键技术研究
  • 批准号:
    62374100
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于国产AI芯片的自动布局布线优化算法研究
  • 批准号:
    62306286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于“MIPs宽覆盖识别-DNA辅助阵列芯片”构建中药毒性PAs新型靶向分析评价系统
  • 批准号:
    82304706
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于非线性幅域滤波技术的低功耗无线接收机芯片研究
  • 批准号:
    62374066
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
O-糖链芯片构建新方法及受体蛋白结合O-糖链的筛选与制备
  • 批准号:
    32371342
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Exploring electrodynamics of correlated 2D transition metal dichalcogenides using on-chip terahertz spectroscopy
使用片上太赫兹光谱探索相关二维过渡金属二硫属化物的电动力学
  • 批准号:
    2311205
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Millimetre-wave and Terahertz On-chip Circuit Test Cluster for 6G Communications and Beyond (TIC6G)
适用于 6G 及以上通信的毫米波和太赫兹片上电路测试集群 (TIC6G)
  • 批准号:
    EP/W006448/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Terahertz Lab-on-a-Chip for Bio-liquid Analysis
用于生物液体分析的太赫兹芯片实验室
  • 批准号:
    EP/V001655/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
On-Chip Terahertz Nanophotonics for Single Molecule Spectroscopy
用于单分子光谱学的片上太赫兹纳米光子学
  • 批准号:
    DE200101041
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
Integration of Terahertz and Lab-on-a-Chip Technologies
太赫兹与芯片实验室技术的集成
  • 批准号:
    553102-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了