CAREER: On-Chip Terahertz Electronic Frequency Combs
职业:片上太赫兹电子频率梳
基本信息
- 批准号:1653100
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Maintaining the exponential growth of electronic signal generation, sensing, and processing is essential to meet the new challenges of the upcoming era featuring ubiquitous sensors for healthcare, environment monitoring, autonomous vehicles/machines, etc. In particular, if the operating frequency of low-cost electronics can be extended into the terahertz (THz) regime, the unprecedented wide bandwidth will enable numerous new applications, such as non-ionizing imaging, molecular identification, high-resolution radar, and ultra-high-speed data link. Although in the past decade THz integrated circuits in silicon have improved remarkably in output power and efficiency, their reliance on high-quality-factor resonance makes the current THz sensors narrowband and fails to fully capitalize on the available broad spectrum for wide-range gas sensing and high-precision radar ranging. To break such a limit, this project investigates a new technique based on electronic THz frequency comb. Through parallel signal processing on the integrated circuit chip, gas sensor and imaging radar using the proposed technique will achieve significantly better spectral coverage and energy efficiency. This research effort will also be integrated with the principal investigator's educational career goal of promoting highly-interdisciplinary studies through the creation of new courses and engaging underrepresented and K-12 students through MIT's outreach programs.The objective of this proposal is to leverage the integration capability of the silicon semiconductor fabrication process and use THz frequency comb technique to distribute the signal-sensing load to an array of narrowband, precisely-controlled THz circuit units. It maintains high energy efficiency while covering a wide bandwidth in a scalable fashion. Sensors based on two types of THz frequency comb will be investigated under this program. First, a rotational-mode molecular sensor will be demonstrated using an evenly distributed frequency comb. The frequency comb will seamlessly cover more than 100 GHz of bandwidth and increase the spectral scanning speed of chip-scale THz spectrometer by a factor of 200. Through an on-chip frequency calibration technique, the spectrometer will scan the frequency spectrum with one-part-per-billion level frequency precision. Second, an imaging radar will be demonstrated using a non-uniform comb and compressive sensing. By quantizing the target distance with a set of nonlinearly distributed wavelengths and by using an error-correction algorithm, the radar can operate with low signal-to-noise ratio and low power consumption. The THz comb radar will also be integrated with a low-cost sensor array in a quasi-optical configuration, so that real-time 3D imaging with electronic scanning and fine resolution can be realized. Through these comprehensive studies, the program will establish the advantages of parallelism in chip-scale wide-band signal sensing and processing.
保持电子信号生成、传感和处理的指数增长对于迎接即将到来的时代的新挑战至关重要,该时代的特点是医疗保健、环境监测、自动驾驶车辆/机器等领域无处不在的传感器。特别是,如果低工作频率成本电子产品可以扩展到太赫兹(THz)范围,前所未有的宽带宽将实现许多新应用,例如非电离成像、分子识别、高分辨率雷达和超高速数据链路。尽管在过去十年中,硅中的太赫兹集成电路在输出功率和效率方面有了显着提高,但它们对高质量因数谐振的依赖使得当前的太赫兹传感器窄带,并且无法充分利用可用的广谱进行宽范围气体传感以及高精度雷达测距。为了打破这一限制,该项目研究了一种基于电子太赫兹频率梳的新技术。通过集成电路芯片上的并行信号处理,使用该技术的气体传感器和成像雷达将实现更好的光谱覆盖范围和能源效率。这项研究工作还将与首席研究员的教育职业目标相结合,即通过创建新课程并通过麻省理工学院的外展计划吸引代表性不足的学生和 K-12 学生来促进高度跨学科的研究。该提案的目标是利用整合能力硅半导体制造工艺,并使用太赫兹频率梳技术将信号传感负载分配到窄带、精确控制的太赫兹电路单元阵列。它保持高能源效率,同时以可扩展的方式覆盖较宽的带宽。该计划将研究基于两种太赫兹频率梳的传感器。首先,将使用均匀分布的频率梳演示旋转模式分子传感器。频率梳将无缝覆盖超过100 GHz的带宽,并将芯片级太赫兹光谱仪的光谱扫描速度提高200倍。通过片上频率校准技术,光谱仪将单部分扫描频谱- 十亿级频率精度。其次,将使用非均匀梳和压缩传感来演示成像雷达。通过用一组非线性分布的波长量化目标距离并使用纠错算法,雷达可以低信噪比和低功耗运行。太赫兹梳状雷达还将与准光学配置中的低成本传感器阵列集成,从而可以实现电子扫描和高分辨率的实时3D成像。通过这些全面的研究,该计划将确立芯片级宽带信号传感和处理中并行性的优势。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Energy-efficient terahertz electronics using multi-functional electromagnetism and high-parallelism architecture
采用多功能电磁学和高并行架构的节能太赫兹电子器件
- DOI:10.1109/mwscas.2017.8053127
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Hu, Zhi;Wang, Cheng;Han, Ruonan
- 通讯作者:Han, Ruonan
Heterodyne Sensing CMOS Array with High Density and Large Scale: A 240-GHz, 32-Unit Receiver Using A De-Centralized Architecture
高密度、大规模外差传感 CMOS 阵列:采用分散式架构的 240 GHz、32 单元接收器
- DOI:10.1109/rfic.2018.8428843
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Hu, Zhi;Wang, Cheng;Han, Ruonan
- 通讯作者:Han, Ruonan
A 220-to-320-GHz FMCW Radar in 65-nm CMOS Using a Frequency-Comb Architecture
采用频率梳架构、采用 65 nm CMOS 的 220 至 320 GHz FMCW 雷达
- DOI:10.1109/jssc.2020.3020291
- 发表时间:2021
- 期刊:
- 影响因子:5.4
- 作者:Yi, Xiang;Wang, Cheng;Chen, Xibi;Wang, Jinchen;Grajal, Jesus;Han, Ruonan
- 通讯作者:Han, Ruonan
An on-chip fully electronic molecular clock based on sub-terahertz rotational spectroscopy
- DOI:10.1038/s41928-018-0102-4
- 发表时间:2018-07
- 期刊:
- 影响因子:34.3
- 作者:Cheng Wang;Xiang Yi;James Mawdsley;Mina Kim;Zihan Wang;R. Han
- 通讯作者:Cheng Wang;Xiang Yi;James Mawdsley;Mina Kim;Zihan Wang;R. Han
A CMOS Molecular Clock Probing 231.061-GHz Rotational Line of OCS with Sub-PPB Long-Term Stability and 66-MW DC Power
具有亚 PPB 长期稳定性和 66 MW 直流功率的 CMOS 分子时钟探测 OCS 231.061 GHz 旋转线
- DOI:10.1109/vlsic.2018.8502271
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Wang, Cheng;Yi, Xiang;Kim, Mina;Zhang, Yaqing;Han, Ruonan
- 通讯作者:Han, Ruonan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruonan Han其他文献
Metal-Optic Nanophotonic Modulators in Standard CMOS Technology
标准 CMOS 技术中的金属光学纳米光子调制器
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Elkabbash;Sivan Trajtenberg‐Mills;Isaac Harris;S. Bandyopadhyay;Mohamed I. Ibrahim;Archer Wang;Xibi Chen;Cole J. Brabec;Hasan Z. Yildiz;Ruonan Han;Dirk Englund - 通讯作者:
Dirk Englund
Broadband Root-Mean-Square Detector in CMOS for On-Chip Measurements of Millimeter-Wave Voltages
用于毫米波电压片上测量的 CMOS 宽带均方根检测器
- DOI:
10.1109/led.2012.2190258 - 发表时间:
2012 - 期刊:
- 影响因子:4.9
- 作者:
Chuan Lee;Wooyeol Choi;Ruonan Han;H. Shichijo;K. O. Kenneth - 通讯作者:
K. O. Kenneth
Cryo-CMOS Controller for Solid-State Color-Center Qubits Towards Scalable Quantum Processors
用于固态色心量子位的冷冻 CMOS 控制器迈向可扩展的量子处理器
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Mohamed I. Ibrahim;Ruonan Han - 通讯作者:
Ruonan Han
The Pursuit of Practical Applications of THz CMOS Chips (Invited)
太赫兹CMOS芯片实际应用的追求(特邀)
- DOI:
10.1109/cicc60959.2024.10529072 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ruonan Han - 通讯作者:
Ruonan Han
Ruonan Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruonan Han', 18)}}的其他基金
EAGER SARE: Physical-Layer Security of THz Communication Using Orbital Angular Momentum and Rapid Frequency Hopping
EAGER SARE:使用轨道角动量和快速跳频的太赫兹通信物理层安全
- 批准号:
2028824 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF Workshop on Security in RF/Analog Microelectronics and Electromagnetics, October, 22-23, 2019 in Alexandria, VA.
NSF 射频/模拟微电子和电磁学安全研讨会,2019 年 10 月 22 日至 23 日在弗吉尼亚州亚历山大举行。
- 批准号:
1937994 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SpecEES: Tag-of-Everything: Secured Wireless Powering and Communication Using THz Spectrum for Ultra-Small, Package-Less ID Chips
SpecEES:一切标签:使用太赫兹频谱为超小型、无封装 ID 芯片提供安全的无线供电和通信
- 批准号:
1824360 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CMOS THz Molecular Clock With Enhanced Stability And Energy Efficiency
具有增强稳定性和能源效率的 CMOS 太赫兹分子时钟
- 批准号:
1809917 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
宽带高能效毫米波太赫兹雷达芯片关键技术研究
- 批准号:62371055
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
太赫兹感知扫描一体化智能超表面芯片的理论、技术与应用验证
- 批准号:62331015
- 批准年份:2023
- 资助金额:242 万元
- 项目类别:重点项目
CMOS太赫兹高分辨率雷达全集成芯片关键技术研究
- 批准号:62334005
- 批准年份:2023
- 资助金额:221 万元
- 项目类别:重点项目
面向高功率太赫兹源应用的氮化镓倍频芯片技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
太赫兹高能效低抖动锁相频率源阵列芯片关键技术研究
- 批准号:62161160310
- 批准年份:2021
- 资助金额:150 万元
- 项目类别:
相似海外基金
Exploring electrodynamics of correlated 2D transition metal dichalcogenides using on-chip terahertz spectroscopy
使用片上太赫兹光谱探索相关二维过渡金属二硫属化物的电动力学
- 批准号:
2311205 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Millimetre-wave and Terahertz On-chip Circuit Test Cluster for 6G Communications and Beyond (TIC6G)
适用于 6G 及以上通信的毫米波和太赫兹片上电路测试集群 (TIC6G)
- 批准号:
EP/W006448/1 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Terahertz Lab-on-a-Chip for Bio-liquid Analysis
用于生物液体分析的太赫兹芯片实验室
- 批准号:
EP/V001655/1 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Research Grant
On-Chip Terahertz Nanophotonics for Single Molecule Spectroscopy
用于单分子光谱学的片上太赫兹纳米光子学
- 批准号:
DE200101041 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Discovery Early Career Researcher Award
Integration of Terahertz and Lab-on-a-Chip Technologies
太赫兹与芯片实验室技术的集成
- 批准号:
553102-2020 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
University Undergraduate Student Research Awards