CAREER:An all-optical plasmonic device to control and couple quantum dots for optical and quantum information processing
职业:用于控制和耦合量子点以进行光学和量子信息处理的全光学等离子体装置
基本信息
- 批准号:1652720
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: CAREER: Ultrafast traffic control of photons on the nanoscale for optical information processing Abstract:Nontechnical description: Modern day computational devices, from smartphones to supercomputers, all rely on electrons to carry and process information. As the footprint of the basic circuits on a microchip is shrinking to nanometers in size, close proximity of these components can cause an information "traffic jam" due to the interactions between electrons. In order to overcome this limitation, current research efforts are exploring the idea of replacing electrons with photons as the principal carriers of information since they do not interact directly with each other. A photonic device is expected to be superior in terms of speed, bandwidth, and energy efficiency. However, this lack of direct interaction can be a double-edged sword: how can a photon be controlled by another photon in an all-optical device? To answer this conundrum, this proposed project will exploit the electromagnetic confinement and enhancement power of metallic nanostructures to not only guide photons on a nanoscale footprint below their diffraction limit, but to also control, on the timescale of trillionths of a second, how photons are emitted from a nanoscale light source called the quantum dot and where they will go. The key idea is not to rely on the direct photon interaction but rather to use the optically excited metallic nanostructures to strongly modify the quantum dot, which subsequently determines the properties and directions of the produced photon. The successful implementation of these techniques lays the path to ultrafast optical switches or transistors that can lead to a paradigm shift in information processing technology.Technical description: This five-year career-development plan is a comprehensive research, education, and outreach program. The research plan aims to develop new ways of controlling the light-matter interactions on the nanoscale in a hybrid system of quantum dots and plasmonic structures. The objectives of the proposed research project are two folds. The first explores a new approach for manipulating and tuning the internal energy states of a single quantum dot through the optical modification of its local dielectric environment using a plasmonic gate. This indirect method exploits the strong near-field effect of the plasmonic structure as a mean of control while avoiding significant changes to the intrinsic properties of the quantum dot due to ohmic loss. The second investigates the coherent and incoherent couplings between two spatially separated quantum dots via a plasmonic waveguide and establish entanglement between the linked dots through a dissipative coupling channel. This coupled design protects stored information in the presence of ohmic loss while maintaining the ultrafast optical readout and broadband guided transfer enabled by a plasmonic waveguide. All of these capabilities are highly desirable in a wide range of applications from ultrafast optical switches to quantum information processing. The educational plan outlines a deep commitment to improve STEM education at the K-12 and university levels. The objectives of the proposed educational plan aim to develop an integrated approach that combines academic learning with extracurricular guidance to help students gain the scientific, analytical, and stress management skills necessary in becoming an independent scientist. This approach is carried out through the revitalization of the local Society of Physics Student chapter. In addition, outreach activities are structured to promote the field of nanotechnology and optics to young women in K-12 schools through visual and interactive presentations and engage middle and high school girls in STEM. Lastly, a new graduate quantum optics course is developed to address the knowledge gap in the current physics curriculum.
职业:职业:光子纳米级光子的超快流量控制摘要:非技术描述:现代计算设备,从智能手机到超级计算机,都依靠电子来携带和处理信息。由于微芯片上基本电路的足迹正在缩小到纳米的大小,因此这些组件的近距离可能会导致信息“流量堵塞”,因为电子之间的相互作用。为了克服这一局限性,当前的研究工作正在探索用光子作为主要信息载体代替电子的想法,因为它们不会彼此直接相互作用。在速度,带宽和能源效率方面,光子设备预计将表现出色。但是,这种缺乏直接相互作用可以是双刃剑:在全光设备中,光子如何由另一个光子控制?为了回答这个难题,这个提议的项目将利用金属纳米结构的电磁限制和增强功率,不仅可以在其衍射极限以下的纳米级足迹上引导光子,还可以控制第二次的巨浪时间量表。从称为量子点的纳米级光源散发出来。关键思想不是依靠直接的光子相互作用,而是使用光学激发的金属纳米结构来强烈修改量子点,该点随后确定了产生的光子的属性和方向。这些技术的成功实施为超快光学开关或晶体管的途径奠定了途径,这些途径可能导致信息处理技术的范式转移。技术描述:这项五年的职业发展计划是一项全面的研究,教育和外展计划。该研究计划旨在开发在量子点和等离子结构混合系统中控制纳米级的光结合相互作用的新方法。拟议的研究项目的目标是两个折叠。第一个探讨了一种新的方法,用于通过使用等离子体栅极对其局部介电环境的光学修饰来操纵和调整单个量子点的内部能量状态。这种间接方法利用了等离激元结构的强近场效应作为对照的平均值,同时避免了由于欧姆损失而导致量子点的内在特性的显着变化。第二个研究了两个空间分离的量子点通过等离子体波导之间的相干和不连贯的耦合,并通过耗散耦合通道在链接点之间建立纠缠。这种耦合设计可在存在欧姆损失的情况下保护存储的信息,同时保持超快的光学读数和宽带引导转移由等离子波导启用。在从超快光学开关到量子信息处理的各种应用中,所有这些功能都是非常可取的。该教育计划概述了在K-12和大学一级改善STEM教育的深刻承诺。拟议的教育计划的目标旨在开发一种综合方法,该方法将学术学习与课外指导相结合,以帮助学生获得成为独立科学家所必需的科学,分析和压力管理技能。这种方法是通过当地物理学生分会的振兴来实现的。此外,通过视觉和互动式演讲,外展活动是为了促进K-12学校中的年轻女性的纳米技术和光学领域,并与STEM中的中学和高中女生互动。最后,开发了一项新的研究生量子光学课程,以解决当前物理课程中的知识差距。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Localized All‐Optical Control of Single Semiconductor Quantum Dots through Plasmon Polariton‐Induced Screening
通过等离激元极化子诱导筛选对单半导体量子点进行局部全光学控制
- DOI:10.1002/adom.201800345
- 发表时间:2018
- 期刊:
- 影响因子:9
- 作者:Seaton, Matt;Krasnok, Alex;Bracker, Allan S.;Alù, Andrea;Wu, Yanwen
- 通讯作者:Wu, Yanwen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanwen Wu其他文献
Strain-induced bandgap engineering in CsGeX3 (X = I, Br or Cl) perovskites: insights from first-principles calculations
CsGeX3(X = I、Br 或 Cl)钙钛矿中的应变诱导带隙工程:第一性原理计算的见解
- DOI:
10.1039/d1cp05787a - 发表时间:
2022 - 期刊:
- 影响因子:3.3
- 作者:
Guangbiao Xiang;Yanwen Wu;Man Zhang;Jiancai Leng;Chen Cheng;Hong Ma - 通讯作者:
Hong Ma
Transient nonlinear optical spectroscopy studies involving biexciton coherence in single quantum dots
涉及单量子点双激子相干性的瞬态非线性光谱研究
- DOI:
10.1103/physrevb.73.153304 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Xiaoqin Li;Yanwen Wu;Xiaodong Xu;D. Steel;D. Gammon - 通讯作者:
D. Gammon
Simulation Wars: A Competition to Increase Participation in Emergency Manuals Simulation Training and a Novel Tool for Rating Simulation Competitions
模拟战争:提高应急手册模拟培训参与度的竞赛和模拟竞赛评级的新工具
- DOI:
10.24015/japm.2018.0095 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jeffrey Huang;K. Nguyen;Chunyuan Zhang;Wei Zheng;Zuhua Rao;Jian Ma;Yanwen Wu;Jinfan Liu;Mian Wu;Hui Zhong;Zhuang Yu - 通讯作者:
Zhuang Yu
High Performance Networking, Computing, and Communication Systems
- DOI:
10.1007/978-3-642-25002-6 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yanwen Wu - 通讯作者:
Yanwen Wu
Software Engineering and Knowledge Engineering: Theory and Practice
- DOI:
10.1007/978-3-642-03718-4 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Yanwen Wu - 通讯作者:
Yanwen Wu
Yanwen Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanwen Wu', 18)}}的其他基金
MRI: Acquisition of the NanoFrazor - a unique AFM-based nanolithography tool to support multidisciplinary research and promote nanoscience in South Carolina and beyond
MRI:收购 NanoFrazor - 一种独特的基于 AFM 的纳米光刻工具,用于支持多学科研究并促进南卡罗来纳州及其他地区的纳米科学
- 批准号:
1920117 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
大口径曲面光学元件的大气等离子体宽行抛光技术研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于SOI片上光互连的等离子体准连续谱束缚态光学传感研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于聚合物分子刷的金属-绝缘体-金属微阵列(MIMn)光学谐振腔的构筑及其动态等离子显色机制研究
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:
基于多传感成像的EAST托卡马克上光学等离子体边界实时重建研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
可逆微形变纳米阵列对等离激元的动态调控及其光学特性研究
- 批准号:61905049
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Sorting and Imaging Micro- and Nano-Particle Pollutions in Aqueous Systems Using a Chiral Plasmonic Optical Tweezers
使用手性等离子体光镊对水系统中的微米和纳米颗粒污染物进行分类和成像
- 批准号:
23K04618 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sub-nanometer Optical Imaging and Self-Assembly on Plasmonic Metals
等离子金属的亚纳米光学成像和自组装
- 批准号:
RGPIN-2022-03088 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Rapid Viral Diagnostic Test by Digital Plasmonic Nanobubbles
利用数字等离子体纳米气泡进行快速病毒诊断测试
- 批准号:
10547200 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Rapid Viral Diagnostic Test by Digital Plasmonic Nanobubbles
利用数字等离子体纳米气泡进行快速病毒诊断测试
- 批准号:
10665073 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
QTPlasmonics - Next generation of plasmonic integrated label free biosensing including optical, electrical and thermal active controls and readouts
QTPlasmonics - 下一代等离子体集成无标记生物传感,包括光学、电学和热学主动控制和读数
- 批准号:
RGPIN-2016-05154 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual