CAREER: Application-specific Power Management

职业:特定应用的电源管理

基本信息

  • 批准号:
    1651881
  • 负责人:
  • 金额:
    $ 50.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-02-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

A large number of existing and emerging computing applications, including the internet of things, sensor networks, wearable electronics, and biomedical devices, have ultra-low-power requirements. In the low-power embedded systems used by these applications, energy efficiency is the primary factor that determines critical system characteristics such as size, weight, cost, reliability, and lifetime. Existing power management techniques for these systems trade off performance to reduce power. However, given the stringent power and energy constraints of emerging and existing low-power systems, solutions that sacrifice performance to reduce power may be unacceptable. Thus, this research focuses on novel opportunities to reduce power without reducing performance, thereby providing free power and energy savings for emerging low-power systems, and in turn, reducing their size, weight, and cost, and increasing their reliability and lifetime. This research also provides a non-intrusive way to significantly improve the energy efficiency of existing systems without sacrificing any performance or re-designing system hardware or software. Considering the sheer number of low-power processors being produced, their importance for future technologies, and the stringent power and energy constraints of these systems, saving power in such systems can have a significant impact. In addition to the technological impacts of this research, the project will contribute several other benefits, including new project-based research opportunities for undergraduate students and students from underrepresented groups, community outreach to K-12 students and other members of the university and community at large through public project showcases, and global outreach in the form of an educational initiative in Kenya on improving best practices in farming with IoT technology. Data characterizing the impacts of project activities on student learning outcomes will be used to improve the integration of research and educational activities at the PI?s institution.The research contributions of this project stem from the development of novel techniques for hardware-software co-analysis that can identify the maximal set of hardware resources that an application can use in a processor, irrespective of application inputs. The results of such co-analysis can be used to eliminate any power expended by resources that an application can never use. This novel co-analysis approach can be leveraged to enable a suite of automated application-specific power management techniques, including application-specific timing analysis, which identifies the longest paths that an application can exercise in a processor and determines an application-specific lower-than-nominal minimum operating voltage that is guaranteed to be safe for the application; application-specific power domain formation and power gating, which can provide opportunities to power gate larger areas of logic for longer periods of time than state-of-the-art power gating techniques; application-specific peak power and energy management, which guarantees application-specific bounds on a design?s peak power and energy requirements and enables application-specific sizing for energy storage and harvesting components; and application-specific thermal management, which can identify and avoid hotspots, prevent thermal emergencies, and perform temperature-aware scheduling for a given application.
大量现有和新兴的计算应用,包括物联网、传感器网络、可穿戴电子产品和生物医学设备,都具有超低功耗要求。在这些应用所使用的低功耗嵌入式系统中,能源效率是决定尺寸、重量、成本、可靠性和寿命等关键系统特性的主要因素。这些系统的现有电源管理技术会牺牲性能来降低功耗。然而,考虑到新兴和现有低功耗系统严格的功率和能量限制,牺牲性能来降低功耗的解决方案可能是不可接受的。因此,本研究重点关注在不降低性能的情况下降低功耗的新机会,从而为新兴的低功耗系统提供免费的功率和节能,进而减小其尺寸、重量和成本,并提高其可靠性和使用寿命。这项研究还提供了一种非侵入式的方法来显着提高现有系统的能源效率,而无需牺牲任何性能或重新设计系统硬件或软件。考虑到正在生产的低功耗处理器的绝对数量、它们对未来技术的重要性以及这些系统严格的功耗和能源限制,在此类系统中节省功耗可能会产生重大影响。除了这项研究的技术影响外,该项目还将带来其他一些好处,包括为本科生和代表性不足群体的学生提供新的基于项目的研究机会,向 K-12 学生以及大学和社区的其他成员进行社区外展。通过公共项目展示和全球推广,在肯尼亚开展了一项教育举措,旨在利用物联网技术改进农业最佳实践。描述项目活动对学生学习成果影响的数据将用于改善 PI 机构研究和教育活动的整合。该项目的研究贡献源于硬件-软件协同分析新技术的开发它可以识别应用程序可以在处理器中使用的最大硬件资源集,而不管应用程序输入如何。这种协同分析的结果可用于消除应用程序永远无法使用的资源所消耗的任何功率。这种新颖的协同分析方法可用于启用一套自动化的特定于应用程序的电源管理技术,包括特定于应用程序的时序分析,它可以识别应用程序可以在处理器中执行的最长路径,并确定特定于应用程序的较低路径。高于保证应用安全的标称最小工作电压;特定于应用的电源域形成和电源门控,与最先进的电源门控技术相比,这可以提供在更长时间内为更大的逻辑区域提供电源门控的机会;特定于应用的峰值功率和能量管理,保证设计的峰值功率和能量需求的特定于应用的界限,并支持能量存储和收集组件的特定于应用的尺寸调整;特定于应用的热管理,可以识别和避免热点,防止热紧急情况,并针对给定应用执行温度感知调度。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A scalable symbolic simulation tool for low power embedded systems
适用于低功耗嵌入式系统的可扩展符号仿真工具
  • DOI:
    10.1145/3489517.3530433
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sethumurugan, Subhash;Hegde, Shashank;Cherupalli, Hari;Sartori, John
  • 通讯作者:
    Sartori, John
Constrained Conservative State Symbolic Co-analysis for Ultra-low-power Embedded Systems
超低功耗嵌入式系统的约束保守状态符号协同分析
Enhancing workload-dependent voltage scaling for energy-efficient ultra-low-power embedded systems
增强节能超低功耗嵌入式系统的工作负载相关电压调节
  • DOI:
    10.1145/3195970.3196046
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohan, Veni;Iyer, Akhilesh;Sartori, John
  • 通讯作者:
    Sartori, John
Bespoke Processors for Applications with Ultra-Low Area and Power Constraints
适用于具有超低面积和功耗限制的应用的定制处理器
  • DOI:
    10.1109/mm.2018.032271059
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Cherupalli, Hari;Duwe, Henry;Ye, Weidong;Kumar, Rakesh;Sartori, John
  • 通讯作者:
    Sartori, John
Property-driven Automatic Generation of Reduced-ISA Hardware
属性驱动的精简 ISA 硬件自动生成
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Sartori其他文献

John Sartori的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Sartori', 18)}}的其他基金

PFI-TT: Creating Commercial-grade Hardware Design Tools for Automated Design of Application-specific Embedded Systems
PFI-TT:创建商业级硬件设计工具,用于特定应用嵌入式系统的自动化设计
  • 批准号:
    1919190
  • 财政年份:
    2019
  • 资助金额:
    $ 50.12万
  • 项目类别:
    Standard Grant
I-Corps: Trimbit Technologies Customer Discovery
I-Corps:Trimbit Technologies 客户发现
  • 批准号:
    1855194
  • 财政年份:
    2018
  • 资助金额:
    $ 50.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Software Canaries
合作研究:软件金丝雀
  • 批准号:
    1255861
  • 财政年份:
    2013
  • 资助金额:
    $ 50.12万
  • 项目类别:
    Continuing Grant

相似国自然基金

周边与中央视觉拥挤效应的心理物理学与脑机制研究及临床应用
  • 批准号:
    32371097
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
氟-18标记咪唑啉I2受体显像剂的研究及其在AD早期诊断中的应用探索
  • 批准号:
    22306014
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大豆抗白粉病新基因GmRmd2图位克隆、功能解析和育种应用
  • 批准号:
    32372155
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
开放环境下终身强化学习方法研究及应用
  • 批准号:
    62376122
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于简并结构平板的多涡旋耦合超声波束形成、特性及应用研究
  • 批准号:
    12374439
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Lentivirus Construct Core
慢病毒构建核心
  • 批准号:
    10630391
  • 财政年份:
    2023
  • 资助金额:
    $ 50.12万
  • 项目类别:
Flt3l gene-modified cDC1 in situ vaccination in NSCLC: mechanisms and therapeutic application
Flt3l 基因修饰的 cDC1 原位疫苗接种在 NSCLC 中的作用:机制和治疗应用
  • 批准号:
    10585591
  • 财政年份:
    2023
  • 资助金额:
    $ 50.12万
  • 项目类别:
Addressing the research-practice gap in the implementation of rapid whole genome sequencing in the NICU
解决新生儿重症监护室实施快速全基因组测序的研究与实践差距
  • 批准号:
    10721786
  • 财政年份:
    2023
  • 资助金额:
    $ 50.12万
  • 项目类别:
Molecular recording to understand the determinants of cell fate transitions in early development
分子记录以了解早期发育中细胞命运转变的决定因素
  • 批准号:
    10643190
  • 财政年份:
    2023
  • 资助金额:
    $ 50.12万
  • 项目类别:
Improving chemical exposome target prediction by application of Coupled Matrix/Tensor-Matrix/Tensor Completion algorithms
通过应用耦合矩阵/张量矩阵/张量完成算法改进化学暴露组目标预测
  • 批准号:
    10734136
  • 财政年份:
    2023
  • 资助金额:
    $ 50.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了