Structural Properties and Strong Relaxations for Mixed Integer Polynomial Optimization

混合整数多项式优化的结构性质和强松弛

基本信息

  • 批准号:
    1634768
  • 负责人:
  • 金额:
    $ 32.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Research in mixed-integer nonlinear optimization has witnessed a significant growth at the theoretical, algorithmic and software levels over the last few years. While these new classes of algorithms have already had a remarkable impact across science, engineering, and economics, there exists a variety of important applications that these methods are unable to address. Compared to linear and convex nonlinear solvers, mixed-integer nonlinear solvers are very slow, cannot handle large-scale problems, and require a high level of user expertise. In fact, many optimization experts believe that in case of nonconvex nonlinear problems, one has to give up on either speed or the guarantee of solution quality. This project aims to address this trade-off, by developing foundational theory to construct strong and tractable polyhedral relaxations for a variety of nonconvex sets that frequently appear as building blocks of nonconvex mixed-integer nonlinear optimization problems. Successful resolution of the research goals of this project will potentially transform solver technology for mixed-integer nonlinear optimization problems; a very powerful framework that subsumes many real-world optimization problems. The project addresses the educational and outreach activities through graduate student mentoring, integration of research results in course work, and broad dissemination of the results of the research.Factorable programming is a widely-used technique for bounding general nonconvex functions. In particular, factorable reformulations of many nonconvex problems, including quadratic programs, multilinear programs, and polynomial optimization problems, contain a collection of multilinear equations. A main focus of this research is to study the facial structure of the convex hull of a set defined by a system of multilinear equations in the space of the original variables. Through an elegant hypergraph-based representation scheme, various structural properties, decomposition techniques, and lifting operations for such sets will be studied. A rigorous study of the strength and complexity of the relaxations will be performed, and new classes of polynomially-solvable optimization problems will be presented.
过去几年,混合整数非线性优化的研究在理论、算法和软件层面取得了显着增长。虽然这些新型算法已经对科学、工程和经济学产生了显着的影响,但仍然存在这些方法无法解决的各种重要应用。与线性和凸非线性求解器相比,混合整数非线性求解器非常慢,无法处理大规模问题,并且需要高水平的用户专业知识。事实上,许多优化专家认为,对于非凸非线性问题,要么放弃速度,要么放弃解质量的保证。该项目旨在通过发展基础理论来解决这种权衡问题,为各种非凸集构造强大且易于处理的多面体松弛,这些非凸集经常作为非凸混合整数非线性优化问题的构建块出现。该项目研究目标的成功解决将有可能改变混合整数非线性优化问题的求解器技术;一个非常强大的框架,包含许多现实世界的优化问题。该项目通过研究生指导、将研究成果整合到课程作业中以及广泛传播研究成果来解决教育和推广活动。可因子规划是一种广泛使用的用于限制一般非凸函数的技术。特别是,许多非凸问题(包括二次规划、多线性规划和多项式优化问题)的可因式重构包含一组多线性方程。这项研究的主要焦点是研究由原始变量空间中的多线性方程组定义的集合的凸包的面部结构。通过基于超图的优雅表示方案,将研究此类集合的各种结构属性、分解技术和提升操作。我们将对松弛的强度和复杂性进行严格的研究,并提出新类别的多项式可解的优化问题。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the complexity of binary polynomial optimization over acyclic hypergraphs
非循环超图上二元多项式优化的复杂度
The Multilinear Polytope for Acyclic Hypergraphs
非循环超图的多线性多面体
  • DOI:
    10.1137/16m1095998
  • 发表时间:
    2018-04-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alberto Del Pia;Aida Khajavirad
  • 通讯作者:
    Aida Khajavirad
Chvátal Rank in Binary Polynomial Optimization
二元多项式优化中的 Chvátal Rank
  • DOI:
    10.1287/ijoo.2019.0049
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Del Pia, Alberto;Di Gregorio, Silvia
  • 通讯作者:
    Di Gregorio, Silvia
On the impact of running intersection inequalities for globally solving polynomial optimization problems
关于运行交集不等式对全局求解多项式优化问题的影响
  • DOI:
    10.1007/s12532-019-00169-z
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Del Pia, Alberto;Khajavirad, Aida;Sahinidis, Nikolaos V.
  • 通讯作者:
    Sahinidis, Nikolaos V.
On decomposability of Multilinear sets
论多重线性集的可分解性
  • DOI:
    10.1007/s10107-017-1158-z
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Alberto Del Pia;Aida Khajavirad
  • 通讯作者:
    Aida Khajavirad
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alberto Del Pia其他文献

Aggregation-based cutting-planes for packing and covering integer programs
用于打包和覆盖整数程序的基于聚合的切割平面
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Merve Bodur;Alberto Del Pia;Santanu S. Dey;M. Molinaro;S. Pokutta
  • 通讯作者:
    S. Pokutta
Rank-one Boolean tensor factorization and the multilinear polytope
一阶布尔张量分解和多线性多胞形
  • DOI:
    10.1287/ijoo.2019.0049
  • 发表时间:
    2022-02-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alberto Del Pia;Aida Khajavirad
  • 通讯作者:
    Aida Khajavirad
Mixed-integer quadratic programming is in NP
混合整数二次规划属于 NP
  • DOI:
    10.1007/s10107-016-1036-0
  • 发表时间:
    2014-07-17
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Alberto Del Pia;Santanu S. Dey;M. Molinaro
  • 通讯作者:
    M. Molinaro
Minimizing Lipschitz-continuous strongly convex functions over integer points in polytopes
最小化多面体整数点上的 Lipschitz 连续强凸函数
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    M. Baes;Alberto Del Pia;Y. Nesterov;S. Onn;R. Weismantel
  • 通讯作者:
    R. Weismantel
A polynomial-size extended formulation for the multilinear polytope of beta-acyclic hypergraphs
β-无环超图的多线性多面体的多项式大小扩展公式
  • DOI:
    10.1007/s10107-023-02009-4
  • 发表时间:
    2022-12-15
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Alberto Del Pia;Aida Khajavirad
  • 通讯作者:
    Aida Khajavirad

Alberto Del Pia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alberto Del Pia', 18)}}的其他基金

Support for NSF Student Poster Session at the 2016 Mixed Integer Programming Workshop; Coral Gables, Florida; 23-26 May 2016
支持 2016 年混合整数编程研讨会上的 NSF 学生海报会议;
  • 批准号:
    1638802
  • 财政年份:
    2016
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant

相似国自然基金

膨润土工程屏障接缝高流态强缓冲密封浆液的改性机制与渗透特性研究
  • 批准号:
    42362035
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
水舌入水强剪切流中气泡演化特性及其与水体的互馈机理研究
  • 批准号:
    52309100
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强相互作用两组份费米体系超冷三体碰撞特性的理论研究
  • 批准号:
    12374235
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
力电耦合强非线性超材料的弹性波调控机理及减振特性研究
  • 批准号:
    52305106
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脉冲强磁场作用下强耗散等离子体中的漂移波和输运特性
  • 批准号:
    12305219
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Strong Gravitational Fields: Theoretical Properties and Observational Signatures
强引力场:理论特性和观测特征
  • 批准号:
    2309191
  • 财政年份:
    2023
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Exploration of Emergent Functional Properties in Topological Semimetals with Strong Magnetic Coupling
强磁耦合拓扑半金属的涌现功能特性探索
  • 批准号:
    22KJ0212
  • 财政年份:
    2023
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
3D Bioprinting of Strong Living Scaffolds
坚固生命支架的 3D 生物打印
  • 批准号:
    10528130
  • 财政年份:
    2022
  • 资助金额:
    $ 32.72万
  • 项目类别:
Collaborative Proposal: Measuring the Physical Properties of Dark Matter with Strong Gravitational Lensing
合作提案:用强引力透镜测量暗物质的物理特性
  • 批准号:
    2206315
  • 财政年份:
    2022
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
3D Bioprinting of Strong Living Scaffolds
坚固生命支架的 3D 生物打印
  • 批准号:
    10682568
  • 财政年份:
    2022
  • 资助金额:
    $ 32.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了