STTR Phase I: Hydrogen Storage in Catalytically-modified Porous Silicon
STTR 第一阶段:催化改性多孔硅储氢
基本信息
- 批准号:1648748
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This STTR Phase I project will study the storage of hydrogen on a novel material produced from silicon - the same substance used to make solar panels and computer chips. This unique and patented approach has the potential to eclipse all prior methods of hydrogen storage in terms of pressure, temperature, safety, cost, and convenience. Silicon is earth-abundant and benign to humans - it is even promotes healthy skin, hair, and fingernails. The implication of hydrogen-in-silicon is that fuel cell-powered vehicles, homes, and electronics can be far more efficient and clean than any other source of energy. Of great significance is that this technology will allow homeowners and businesses to generate their own hydrogen by splitting water using rooftop solar panels. By storing this as hydrogen-in-silicon a home can be run overnight or for many days during a cloudy spell. Hydrogen can replace the batteries in portable electronics so they can last up to 20 days without a recharge - far longer than with batteries. And if the rooftop system is of sufficient size, one can produce the hydrogen needed for a fuel cell vehicle, such as those already on the market. The implications of this are far-reaching, allowing complete energy independence for all, for all time to come, with minimal environmental impact and using almost completely renewable and low-cost resources which are easy to recycle.Porous silicon is easy to synthesize but requires a catalyst to recharge from a gaseous source. The introduction of the catalyst is critical as it must be controlled spatially and positioned to effect spillover onto and off of silicon. Density Functional Theory studies show this is energetically favorable and first-order macroscopic calculations indicate that recharge can be effected in 3.5 minutes at 8 bar and 250 C. The overall energy difference between fully-charged and fully-discharged silicon-hydrogen is an amazingly low 1 kcal/mol. The energy barrier is the strong H-H bond which dominates the kinetics. The course of this project is to strategically place palladium atoms at specific sites on the matrix of porous silicon so that it can mediate the H-H bond energy and allow spillover onto the 800 m^2/gm surface area of microporous silicon. This has been patented but never demonstrated in the laboratory, which is why this funding from NSF is needed. A further goal of this work is to demonstrate the viability of low-cost silicon using metallurgical grade material instead of the single-crystal silicon which has been used to date.
STTR 第一阶段项目将研究氢在一种由硅制成的新型材料上的储存——硅与制造太阳能电池板和计算机芯片的材料相同。这种独特的专利方法有可能在压力、温度、安全性、成本和便利性方面超越所有现有的储氢方法。硅在地球上储量丰富,对人类有益——它甚至可以促进皮肤、头发和指甲的健康。硅氢的含义是,燃料电池驱动的车辆、家庭和电子产品比任何其他能源都更加高效和清洁。具有重要意义的是,这项技术将允许房主和企业通过使用屋顶太阳能电池板分解水来生产自己的氢气。通过将其存储为硅氢,房屋可以整夜运行,或者在阴天期间运行很多天。氢气可以替代便携式电子产品中的电池,因此它们可以在不充电的情况下持续使用长达 20 天 - 比电池长得多。如果屋顶系统足够大,就可以生产燃料电池汽车所需的氢气,例如市场上已有的燃料电池汽车。其影响是深远的,让所有人在未来的任何时候都能完全实现能源独立,对环境影响最小,并使用几乎完全可再生且易于回收的低成本资源。多孔硅易于合成,但需要从气态源再充填的催化剂。催化剂的引入至关重要,因为它必须在空间上进行控制并定位以影响硅上和硅上的溢出。密度泛函理论研究表明,这在能量上是有利的,并且一阶宏观计算表明,在 8 bar 和 250 C 的条件下,可以在 3.5 分钟内完成再充电。完全充电和完全放电的硅氢之间的总能量差非常低1千卡/摩尔。能垒是主导动力学的强 H-H 键。该项目的过程是将钯原子战略性地放置在多孔硅基质上的特定位置,使其能够调节 H-H 键能并允许溢出到微孔硅的 800 m^2/gm 表面积上。该技术已获得专利,但从未在实验室中得到证实,这就是需要 NSF 资助的原因。这项工作的另一个目标是证明使用冶金级材料代替迄今为止使用的单晶硅的低成本硅的可行性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Wilks其他文献
Alan Wilks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
热带河口特有鱼类尖鳍鲤早期生活史不同阶段的栖息地利用变化及驱动机制
- 批准号:32360917
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
PPP项目跨阶段监管机制研究
- 批准号:72301115
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗生素对不同生长阶段蓝藻光合电子传递和生理代谢的影响及分子机制研究
- 批准号:52300219
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多活性纳米酶多靶点全阶段治疗特发性肺纤维化
- 批准号:32371438
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
- 批准号:42371164
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
STTR Phase I: 3D Printed Vapor Cooled Liquid Hydrogen Storage Tank for Use in Enterprise Level Unmanned Aerial Vehicles
STTR 第一阶段:3D 打印气冷液氢储罐,用于企业级无人机
- 批准号:
1747234 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
STTR Phase I: Hydrogen Bromine Electrolysis for Highly Efficient Hydrogen-Based Energy Storage and High Value Chemical Applications
STTR 第一阶段:用于高效氢基储能和高价值化学应用的氢溴电解
- 批准号:
1416874 - 财政年份:2014
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
STTR Phase I: High-Yield Hydrogen Production from Biomass Sugars by Cell-Free Biosystems for Mobile Electricity Generation
STTR 第一阶段:通过无细胞生物系统从生物质糖中高产制氢用于移动发电
- 批准号:
1321528 - 财政年份:2013
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
STTR Phase I: Graphene-Platinum Composite for Hydrogen Fuel Cells
STTR第一阶段:用于氢燃料电池的石墨烯-铂复合材料
- 批准号:
0930099 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
STTR Phase I: High Temperature Solar Thermal Biomass Gasification and Co-reduction of Iron Oxide to Produce Hydrogen
STTR第一期:高温光热生物质气化与氧化铁共还原制氢
- 批准号:
0741059 - 财政年份:2008
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant