EAGER: Physical Layer Security for the Internet of Things
EAGER:物联网的物理层安全
基本信息
- 批准号:1647198
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cybersecurity is a one of the most pressing issues in technology development and deployment today, and is a serious societal concern. Wireless networks are particularly challenging in this regard. The Internet of Things is an emerging aspect of wireless communications, which is expected to interconnect hundreds of billions of devices, spanning home, vehicular, and industrial environments. These devices will be used for applications ranging from autonomous vehicles to health care. The complexity, extent and range of applications envisioned for the Internet of Things make it especially vulnerable to cyber-attack, while at the same time making it particularly difficult to protect from such attacks using traditional methods. Furthermore, the massive number of these devices, the low power available to them, the limited hardware of which they will be comprised, and the lack of traditional infrastructure to connect them, also pose severe technical challenges to the use of traditional methods of cyber security in this setting. This study aims to develop a new security paradigm for the Internet of Things, in which the physical properties of the radiofrequency environment are used to enhance the security of communications between devices. This work represents a completely new approach to communications security in the Internet of Things, which has far-reaching implications on the ability of these technologies to be deployed in a greater number of security-sensitive applications. Thus, this research has the potential to transform cybersecurity in an environment that is sure to become a major part of our information infrastructure in the coming years.The proposed work will address critical issues in Internet of Things security, which are based on the defining aspects of the Internet of Things: short-packet communication, massive and widely distributed deployment, and large-scale data collection. Physical-layer security methods, which exploit resources in the transmission medium to guarantee secure communication against eavesdroppers, are promising solutions to address the challenges posed in securing the Internet of Things. This exploratory study will consider the potential of physical-layer-security principles for application in the Internet of Things. Three main thrusts are envisioned: secure transmission of short packets; secure function computation; and scaling laws for secrecy capacity in Internet of Things networks. Short packets are a critical part of Internet of Things applications such as vehicle-to-vehicle communications, alerting systems, and sensor networks. Much work on physical layer security has focused on the classical Shannon regime of infinite block-length, which is not suitable for such applications. Thus, developing an understanding of the fundamentals of physical layer security in the short block-length regime is a critical step in applying such methods to the Internet of Things. The Internet of Things is also associated with very large distributed data applications, in which the Internet of Things terminals are sensors generating large amount of spatially distributed data. In such situations, reliable and secure computation from such data is an important aspect of cyber-security in Internet of Things applications. Therefore, developing techniques to do so is a critical step in the development of secure spatially distributed sensing systems. Moreover, scaling laws have been an important part of the understanding of the capabilities of large-scale wireless networks, such as the Internet of Things. Determining how secrecy capacity scales in such networks will lead to a greater understanding of the fundamental ability of Internet of Things to support secure communication, and can thereby guide the development of secure protocols and coding schemes for Internet of Things applications.
网络安全是当今技术开发和部署中最紧迫的问题之一,也是一个严重的社会问题。无线网络在这方面尤其具有挑战性。物联网是无线通信的一个新兴方面,预计将连接家庭、车辆和工业环境中的数千亿设备。这些设备将用于从自动驾驶汽车到医疗保健等各种应用。物联网应用的复杂性、范围和范围使其特别容易受到网络攻击,同时也使得使用传统方法防范此类攻击特别困难。 此外,这些设备数量庞大、可用功率低、组成它们的硬件有限以及缺乏连接它们的传统基础设施,也对传统网络安全方法的使用提出了严峻的技术挑战在这个设置中。本研究旨在开发一种新的物联网安全范例,其中射频环境的物理特性用于增强设备之间通信的安全性。这项工作代表了一种全新的物联网通信安全方法,这对于将这些技术部署到更多安全敏感应用程序中的能力具有深远的影响。因此,这项研究有可能在未来几年必将成为我们信息基础设施主要部分的环境中改变网络安全。拟议的工作将解决物联网安全中的关键问题,这些问题基于定义方面物联网的特点:短包通信、海量、广泛分布的部署、大规模数据采集。 物理层安全方法利用传输介质中的资源来保证安全通信免遭窃听,是解决物联网安全挑战的有前途的解决方案。这项探索性研究将考虑物理层安全原则在物联网中应用的潜力。 设想了三个主要目标:短数据包的安全传输;安全函数计算;物联网网络保密能力的扩展法则。短数据包是车对车通信、警报系统和传感器网络等物联网应用的关键部分。 关于物理层安全性的许多工作都集中在无限块长度的经典香农机制上,这不适合此类应用。 因此,了解短块长度机制中物理层安全的基础知识是将此类方法应用于物联网的关键一步。物联网还与非常大的分布式数据应用相关,其中物联网终端是产生大量空间分布数据的传感器。在这种情况下,根据此类数据进行可靠且安全的计算是物联网应用中网络安全的一个重要方面。 因此,开发这样做的技术是开发安全空间分布式传感系统的关键一步。 此外,缩放定律一直是理解物联网等大规模无线网络功能的重要组成部分。 确定此类网络中的保密容量如何扩展将有助于更好地了解物联网支持安全通信的基本能力,从而指导物联网应用的安全协议和编码方案的开发。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approaches to Secure Inference in the Internet of Things: Performance Bounds, Algorithms, and Effective Attacks on IoT Sensor Networks
- DOI:10.1109/msp.2018.2842261
- 发表时间:2018-09
- 期刊:
- 影响因子:14.9
- 作者:Jiangfan Zhang;Rick S. Blum;H. Poor
- 通讯作者:Jiangfan Zhang;Rick S. Blum;H. Poor
Secure computation of linear functions over linear discrete multiple-access wiretap channels
通过线性离散多址窃听通道安全计算线性函数
- DOI:10.1109/acssc.2016.7869665
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Goldenbaum, Mario;Boche, Holger;Poor, H. Vincent
- 通讯作者:Poor, H. Vincent
Secret-Key Generation and Convexity of the Rate Region Using Infinite Compound Sources
使用无限复合源的速率区域的秘密密钥生成和凸性
- DOI:10.1109/tifs.2018.2809680
- 发表时间:2018
- 期刊:
- 影响因子:6.8
- 作者:Tavangaran, Nima;Schaefer, Rafael F.;Poor, H. Vincent;Boche, Holger
- 通讯作者:Boche, Holger
Secure Massive MIMO Relaying Systems in a Poisson Field of Eavesdroppers
- DOI:10.1109/tcomm.2017.2723565
- 发表时间:2017-11
- 期刊:
- 影响因子:8.3
- 作者:T. M. Hoang;T. Duong;H. Tuan;H. Poor
- 通讯作者:T. M. Hoang;T. Duong;H. Tuan;H. Poor
Wireless physical layer security
- DOI:10.1073/pnas.1618130114
- 发表时间:2017-01-03
- 期刊:
- 影响因子:11.1
- 作者:Poor, H. Vincent;Schaefer, Rafael F.
- 通讯作者:Schaefer, Rafael F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harold Vincent Poor其他文献
Harold Vincent Poor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harold Vincent Poor', 18)}}的其他基金
ECCS-EPSRC: NeuroComm: Brain-Inspired Wireless Communications -- From Theoretical Foundations to Implementation for 6G and Beyond
ECCS-EPSRC:NeuroComm:受大脑启发的无线通信——从理论基础到 6G 及更高版本的实施
- 批准号:
2335876 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
- 批准号:
2128448 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER:Collaborative Research: Blockchain Graphs as Testbeds of Power Grid Resiliece and Functionality Metrics
EAGER:协作研究:区块链图作为电网弹性和功能指标的测试平台
- 批准号:
2039716 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: The effects of evolutionary adaptations on the spreading of COVID-19
RAPID:合作研究:进化适应对 COVID-19 传播的影响
- 批准号:
2026982 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NSF-BSF:CIF: Small: A Unified View of Estimation and Information Relationships for Networks and Beyond
NSF-BSF:CIF:小型:网络及其他领域的估计和信息关系的统一视图
- 批准号:
1908308 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Local Topological Properties of Power Flow Networks, and Their Role in Power System Functionality
EAGER:协作研究:潮流网络的局部拓扑特性及其在电力系统功能中的作用
- 批准号:
1824710 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
AMPS: Collaborative Research: Analysis of Local Power Grid Properties: From Network Motifs to Tensors
AMPS:协作研究:本地电网特性分析:从网络主题到张量
- 批准号:
1736417 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
WiFiUS: Collaborative Research: Secure Inference in the Internet of Things
WiFiUS:协作研究:物联网中的安全推理
- 批准号:
1702808 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Renewables: Collaborative Research: Foundations of Prosumer-Centric Grid Energy Management
EAGER:可再生能源:合作研究:以产消者为中心的电网能源管理的基础
- 批准号:
1549881 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Feedback Communication: Models, Designs, and Fundamental Limits
CIF:媒介:协作研究:反馈沟通:模型、设计和基本限制
- 批准号:
1513915 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
儿童白血病生存者身体活动的行为改变整合机制与亲子进阶式移动干预研究
- 批准号:72374231
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
家庭视角下儿童身体活动促进的干预策略研究:基于SCT-HAPA-FFT整合模型
- 批准号:72374012
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
我国居家脊髓损伤人群身体活动的环境-个人交互影响机制和同伴远程促进模式研究
- 批准号:72374229
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
大肠杆菌肠型与高龄老人身体机能衰退的关系及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
Hox13基因调控斑马鱼尾部身体形成的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Physical layer authentication of IoT devices in the 6G era
6G时代物联网设备物理层认证
- 批准号:
24K07482 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrated Waveform and Intelligence (IWAI): Physical Layer Solutions to Sustainable 6G
集成波形和智能 (IWAI):可持续 6G 的物理层解决方案
- 批准号:
EP/Y000315/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324936 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324937 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Unraveling the Impacts of Ocean Surface Current Gradients and Ocean Surface Waves on Atmospheric Boundary Layer Physical Processes over the Gulf Stream Using COAWST Model
使用 COAWST 模型揭示海面洋流梯度和海面波浪对湾流上空大气边界层物理过程的影响
- 批准号:
2307335 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant