SHF: EAGER: Collaborative Research: Demonstrating the Feasibility of Automatic Program Repair Guided by Semantic Code Search

SHF:EAGER:协作研究:展示语义代码搜索引导的自动程序修复的可行性

基本信息

  • 批准号:
    1646813
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Software is an integral part of our everyday lives, and our economy relies heavily on software working correctly. However, bugs in software cause security breaches, and cost our economy billions of dollars annually. While these high costs of bugs are well known, the software industry struggles to remedy the situation because the inherent complexity of the software makes bugs so common that new bugs are typically reported faster than developers can fix them. The goal of this project is to develop a technique that fixes bugsautomatically, greatly reducing the cost of fixing the bugs, improving quality of software, and reducing the negative effects on the economy and society.Because so much software has already been written, many subroutines, data structures, and algorithm implementations already exist as part of open-source software. Therefore, for many software bugs, there already exist subroutines, data structures, and algorithm implementations in other open-source software that implement the correct behavior and can be substituted into buggy systems to fix the bugs. This project verifies two key properties necessary to build such a bug fixing technique. First, the project attempts to validate the assumption that correct code candidates actually exist in open-source software code bases. Second, the project aims to demonstrate that semantic code search techniques can effectively find these code candidates, and that the gaps between the correct and incorrect versions can be bridged using automatic techniques. Altogether, this exploratory project is intended to establish the feasibility of automated bug fixing through semantic search of open-source software. The broader impact of this work is the advancement of techniques that improve software quality, which, in turn, reduces the negative economic and societal effects of software bugs. This grant is exploratory work on an untested, but potentially transformative, research idea.
软件是我们日常生活中不可或缺的一部分,我们的经济在很大程度上依赖于软件的正常运行。然而,软件错误会导致安全漏洞,每年给我们的经济造成数十亿美元的损失。虽然错误的高昂成本是众所周知的,但软件行业一直在努力纠正这种情况,因为软件固有的复杂性使得错误如此普遍,以至于新错误的报告速度通常比开发人员修复它们的速度要快。 该项目的目标是开发一种自动修复bug的技术,大大降低修复bug的成本,提高软件质量,减少对经济和社会的负面影响。因为已经编写了很多软件,所以很多子程序、数据结构和算法实现已经作为开源软件的一部分存在。因此,对于许多软件错误,其他开源软件中已经存在实现正确行为的子例程、数据结构和算法实现,并且可以替换到有错误的系统中来修复错误。该项目验证了构建此类错误修复技术所需的两个关键属性。首先,该项目试图验证开源软件代码库中实际存在正确候选代码的假设。其次,该项目旨在证明语义代码搜索技术可以有效地找到这些候选代码,并且可以使用自动技术来弥合正确版本和错误版本之间的差距。总而言之,这个探索性项目旨在通过开源软件的语义搜索建立自动错误修复的可行性。这项工作更广泛的影响是提高软件质量的技术进步,从而减少软件错误对经济和社会的负面影响。 这笔资助是对未经测试但具有潜在变革性的研究想法的探索性工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathryn Stolee其他文献

Kathryn Stolee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathryn Stolee', 18)}}的其他基金

Improving Software Testing Education through Lightweight Explicit Testing Strategies and Feedback
通过轻量级显式测试策略和反馈改进软件测试教育
  • 批准号:
    2141923
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
SHF: SMALL: Automated Discovery of Cross-Language Program Behavior Inconsistency
SHF:SMALL:跨语言程序行为不一致的自动发现
  • 批准号:
    2006947
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
CAREER: On the Foundations of Semantic Code Search
职业:语义代码搜索的基础
  • 批准号:
    1749936
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
SHF: Small: Supporting Regular Expression Testing, Search, Repair, Comprehension, and Maintenance
SHF:小型:支持正则表达式测试、搜索、修复、理解和维护
  • 批准号:
    1714699
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Semi and Fully Automated Program Repair and Synthesis via Semantic Code Search
SHF:媒介:协作研究:通过语义代码搜索进行半自动化和全自动程序修复和合成
  • 批准号:
    1645136
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Semi and Fully Automated Program Repair and Synthesis via Semantic Code Search
SHF:媒介:协作研究:通过语义代码搜索进行半自动化和全自动程序修复和合成
  • 批准号:
    1563726
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
SHF: EAGER: Collaborative Research: Demonstrating the Feasibility of Automatic Program Repair Guided by Semantic Code Search
SHF:EAGER:协作研究:展示语义代码搜索引导的自动程序修复的可行性
  • 批准号:
    1446932
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant

相似国自然基金

渴望及其对农村居民收入差距的影响研究
  • 批准号:
    71903117
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
威胁应对视角下的消费者触摸渴望及其补偿机制研究
  • 批准号:
    71502075
  • 批准年份:
    2015
  • 资助金额:
    17.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SHF: EAGER: Collaborative Research: Demonstrating the Feasibility of Automatic Program Repair Guided by Semantic Code Search
SHF:EAGER:协作研究:展示语义代码搜索引导的自动程序修复的可行性
  • 批准号:
    1446683
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
SHF: EAGER: Collaborative Research: Mapping Software Analysis Problems to Efficient and Accurate Constraints
SHF:EAGER:协作研究:将软件分析问题映射到高效、准确的约束
  • 批准号:
    1449636
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
SHF: EAGER: Collaborative Research: Mapping Software Analysis Problems to Efficient and Accurate Constraints
SHF:EAGER:协作研究:将软件分析问题映射到高效、准确的约束
  • 批准号:
    1449626
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
SHF: EAGER: Collaborative Research: Demonstrating the Feasibility of Automatic Program Repair Guided by Semantic Code Search
SHF:EAGER:协作研究:展示语义代码搜索引导的自动程序修复的可行性
  • 批准号:
    1446932
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
SHF: EAGER: Collaborative Research: Demonstrating the Feasibility of Automatic Program Repair Guided by Semantic Code Search
SHF:EAGER:协作研究:展示语义代码搜索引导的自动程序修复的可行性
  • 批准号:
    1446966
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了