AitF:Collaborative Research: Bridging the Gap between Theory and Practice for Matching and Edge Cover Problems

AitF:协作研究:弥合匹配和边缘覆盖问题理论与实践之间的差距

基本信息

项目摘要

Every year the 19,000 students who graduate from medical schools in the U.S. are matched with the hospitals where they will do their residency training. Both students and hospitals rank their choices, and an algorithm is used to find a matching that gives each student their best available choice. These problems also arise in other contexts: matching organ donors to recipients whose bodies will not reject the transplanted organ, matching advertisements to web surfers based on their interests, etc. Variations of matching problems, and related edge cover problems, are formalized in computer science on combinatorial objects called graphs, and involve beautiful mathematics, sophisticated algorithms, efficient implementations of these algorithms on modern desk-top computers and supercomputers, and empirical evaluation on a number of problems that arise in application areas such as computational science and engineering, data science, network science, etc. In this project, the two PIs will develop new algorithms and software for matching and edge cover problems, and make implementations available for practitioners in various fields of science, engineering and industry. The PIs will also train two PhD students in this project, and develop teaching resources to make these developments accessible to undergraduate and graduate students in computer science. The problem of computing a matching that maximizes some objective function has been actively investigated for decades, driven by many high-profile industrial and medical applications. This project focuses on the design, theoretical analysis, and implementation of matching algorithms that meet the needs of modern applications, and considers generalized matching problems such as b-matching, b-edge cover, and metric matching. Classical serial algorithms that compute exactly optimum matchings are not always suited to massive graph data sets, which can contain billions of edges. Fortunately, in many applications it suffices to have nearly optimum matchings rather than exactly optimum ones. One goal of this project is to design simple and efficient matching algorithms that are both highly parallel, and produce provably good approximate solutions.This project will examine several open problems on the approximability of generalized weighted matching problems, particularly on which matching-type problems admit linear time algorithms with approximation factor arbitrarily close to one. To that end, the PIs will study how relaxing standard linear programming formulations of generalized weighted matching problems allows for more efficient algorithms. These and other algorithms will be modified to make them efficient on modern processors that support parallel computing. Two PhD students will be trained in this project. Generalized graph matching algorithms are now applied in numerical linear algebra software, for preconditioning, graph clustering, anonymizing data, and network alignment. The PIs will evaluate the performance of new and existing algorithms on these applications. The PIs will make freely available all code of matching algorithms developed under this project.Basic matching algorithms from the mid-20th century are firmly established in the canon of computer science education, but few modern matching algorithms are taught at the undergraduate level. The PIs will incorporate modules on modern matching and applications into their courses at Purdue University and the University of Michigan, and make these materials publicly available.
每年,从美国医学院毕业的19,000名学生都与他们将接受居住培训的医院相匹配。学生和医院都对自己的选择进行了排名,并使用算法来找到匹配,从而为每个学生提供最佳的选择。这些问题在其他情况下也出现:将器官捐赠者与接收者相匹配,他们的身体不会拒绝移植的器官,根据其兴趣将广告与网络冲浪者相匹配。在称为图的组合对象上,涉及精美的数学,复杂的算法,在现代台式计算机和超级计算机上的这些算法的有效实现,以及对计算科学和数据科学等应用领域中出现的许多问题的经验评估,网络科学等。在这个项目中,两个PI将开发新算法和软件,以匹配和边缘涵盖问题,并为各个科学,工程和行业领域的从业人员提供实施。 PI还将在该项目中培训两名博士学位学生,并开发教学资源,以使本科和计算机科学研究生可以访问这些发展。在许多备受瞩目的工业和医疗应用的驱动下,计算最大化某些目标功能的匹配的匹配问题已经积极研究了数十年。 该项目着重于满足现代应用程序需求的匹配算法的设计,理论分析和实施,并考虑了诸如B匹配,B边缘封面和度量匹配等广义匹配问题。 准确计算最佳匹配的经典串行算法并不总是适合大量的图形数据集,其中可能包含数十亿个边缘。 幸运的是,在许多应用中,几乎具有最佳匹配而不是最佳匹配功能就足够了。 该项目的一个目标是设计简单有效的匹配算法,这些算法高度平行,并且可证明是良好的近似解决方案。本项目将研究一些关于广义加权匹配问题的近似性的开放性问题近似因子任意接近一个的线性时间算法。 为此,PI将研究一般加权匹配问题的放松标准线性编程公式如何产生更有效的算法。这些算法和其他算法将被修改,以使它们在支持并行计算的现代处理器上有效。将在该项目中对两名博士学位学生进行培训。现在,使用数值线性代数软件中应用广义图匹配算法,用于预处理,图形群集,匿名数据和网络对齐。 PI将评估这些应用程序上新算法和现有算法的性能。 PI将免费提供所有在该项目下制定的匹配算法的守则。在计算机科学教育的规范中,牢固地确定了20世纪中叶的基础匹配算法,但是很少有现代匹配算法在本科生层面教授。 PIS将在普渡大学和密歇根大学的课程中纳入现代匹配和应用的模块,并将这些材料公开提供。

项目成果

期刊论文数量(51)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Complexity of (Δ+1) Coloring in Congested Clique, Massively Parallel Computation, and Centralized Local Computation
Near-optimal Distributed Triangle Enumeration via Expander Decompositions
通过扩展器分解进行近乎最优的分布式三角形枚举
  • DOI:
    10.1145/3446330
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Chang, Yi-Jun;Pettie, Seth;Saranurak, Thatchaphol;Zhang, Hengjie
  • 通讯作者:
    Zhang, Hengjie
Fully Dynamic Connectivity in O (log n (log log n ) 2 ) Amortized Expected Time
完全动态连接,时间复杂度为 O (log n (log log n ) 2 ) 摊销预期时间
  • DOI:
    10.1137/1.9781611974782.32
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huang, Shang-En;Huang, Dawei;Kopelowitz, Tsvi;Pettie, Seth
  • 通讯作者:
    Pettie, Seth
Wake up and join me! An energy-efficient algorithm for maximal matching in radio networks
  • DOI:
    10.1007/s00446-022-00426-w
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Varsha Dani;Aayush Gupta;Thomas P. Hayes;Seth Pettie
  • 通讯作者:
    Varsha Dani;Aayush Gupta;Thomas P. Hayes;Seth Pettie
Improved Distributed Expander Decomposition and Nearly Optimal Triangle Enumeration
改进的分布式扩展器分解和近乎最优的三角形枚举
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seth Pettie其他文献

Randomized minimum spanning tree algorithms using exponentially fewer random bits
使用指数级更少随机位的随机最小生成树算法
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seth Pettie;V. Ramachandran
  • 通讯作者:
    V. Ramachandran
Additive spanners and (α, β)-spanners
加法扳手和 (α, β)-扳手
  • DOI:
    10.1145/1868237.1868242
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Surender Baswana;T. Kavitha;K. Mehlhorn;Seth Pettie
  • 通讯作者:
    Seth Pettie
Finding minimum spanning trees in O(m (m; n)) time
在 O(m (m; n)) 时间内找到最小生成树
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seth Pettie
  • 通讯作者:
    Seth Pettie
Online Dictionary Matching with One Gap
在线词典一间隙匹配
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Amir;T. Kopelowitz;Avivit Levy;Seth Pettie;E. Porat;B. R. Shalom
  • 通讯作者:
    B. R. Shalom
An Inverse-Ackermann Type Lower Bound For Online Minimum Spanning Tree Verification*
用于在线最小生成树验证的逆阿克曼型下界*
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seth Pettie
  • 通讯作者:
    Seth Pettie

Seth Pettie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seth Pettie', 18)}}的其他基金

CCF:Small:Algorithmic Fraud Detection
CCF:Small:算法欺诈检测
  • 批准号:
    2221980
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AF: Small: Locality and Energy in Distributed Computing
AF:小:分布式计算中的局部性和能量
  • 批准号:
    1815316
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Hardness in Polynomial Time
AF:媒介:协作研究:多项式时间内的硬度
  • 批准号:
    1514383
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
TWC: Small: Collaborative: Cost-Competitve Analysis - A New Tool for Designing Secure Systems
TWC:小型:协作:成本竞争分析 - 设计安全系统的新工具
  • 批准号:
    1318294
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AF:Small:Data Structures for Dynamic Networks
AF:小:动态网络的数据结构
  • 批准号:
    1217338
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Advanced Data Structures for Shortest Paths, Routing, and Self-Adjusting Computation
职业:最短路径、路由和自调整计算的高级数据结构
  • 批准号:
    0746673
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    2051197
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    2006206
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1940759
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
  • 批准号:
    1733812
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
  • 批准号:
    1854742
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了