BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research

BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合

基本信息

  • 批准号:
    1636786
  • 负责人:
  • 金额:
    $ 11.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Vast quantities of health, environmental, and behavioral data are being generated today, yet they remain locked in digital silos. For example, data from health care providers, such as hospitals, provide a dynamic view of health of individuals and populations from birth to death. At the same time, government institutions and industry have released troves of economic, environmental, and behavioral datasets, such as indicators of income/poverty, adverse exposure (e.g., air pollution), and ecological factors (e.g., climate) to the public domain. How are economic, environmental, and behavioral factors linked with health? This project will put together numerous sources of large environmental and clinical data streams to enable the scientific community to address this question. By breaking current data silos, the broader scientific impacts will be wide. First, this effort will foster new routes of biomedical investigation for the big data community. Second, the project will enable discoveries that will have behavioral, economic, environmental, and public health relevance.This project will aim to assemble a first-ever data warehouse containing numerous health/clinical, environmental, behavioral, and economic data streams to ultimately enable causal discovery between these data sources. First, the team will integrate numerous health data streams by leveraging the Observational Health Data Sciences and Informatics (OHDSI, www.ohdsi.org) network, a virtual data repository that contains millions of longitudinal patient measurements, such as drugs and disease diagnoses. Second, the team will build a centralized data warehouse that contains important environmental, behavioral, and economic data across the United States, such as the Environmental Protection Agency air pollution AirData, the United States Census data on income and occupation statistics, and the National Oceanic Administration Association for climate and weather-related information. Third, the team will disseminate emerging computational methods for causal inference and machine learning to enable researchers to find causal links between environmental, economic, behavioral, and clinical factors. The team will leverage our broad collaborative network consisting of academic big data researchers, federal-level institutes (e.g., EPA, NOAA), and hospitals (e.g., Partners HealthCare) to integrate these data and to disseminate cutting edge machine learning tools. Lastly, the project will create training resources (e.g., interactive how-to guides), coordinate cross-institution student internships, and lead a hands-on workshop to demonstrate use of the integrated data warehouse. The ultimate goal of the project is to facilitate community-led and collaborative causal discovery through dissemination of integrated and open big data and analytics tools.
如今,大量的健康、环境和行为数据正在生成,但它们仍然被锁定在数字孤岛中。例如,来自医院等医疗保健提供者的数据提供了个人和人群从出生到死亡的健康状况的动态视图。与此同时,政府机构和行业向公共领域发布了大量经济、环境和行为数据集,例如收入/贫困指标、不良暴露(例如空气污染)和生态因素(例如气候) 。经济、环境和行为因素如何与健康相关?该项目将汇集大量的大型环境和临床数据流,使科学界能够解决这个问题。通过打破当前的数据孤岛,更广泛的科学影响将是广泛的。首先,这项工作将为大数据界培育生物医学研究的新途径。其次,该项目将实现与行为、经济、环境和公共卫生相关的发现。该项目的目标是组装第一个包含大量健康/临床、环境、行为和经济数据流的数据仓库,以最终实现这些数据源之间的因果发现。首先,该团队将利用观察健康数据科学和信息学(OHDSI,www.ohdsi.org)网络整合大量健康数据流,该网络是一个虚拟数据存储库,其中包含数百万个纵向患者测量数据,例如药物和疾病诊断。其次,团队将建立一个集中式数据仓库,其中包含美国各地重要的环境、行为和经济数据,例如环境保护局空气污染AirData、美国人口普查收入和职业统计数据以及国家海洋局数据。气候和天气相关信息管理协会。第三,该团队将传播用于因果推理和机器学习的新兴计算方法,使研究人员能够找到环境、经济、行为和临床因素之间的因果关系。该团队将利用我们由学术大数据研究人员、联邦级机构(例如 EPA、NOAA)和医院(例如 Partners HealthCare)组成的广泛协作网络来整合这些数据并传播尖端的机器学习工具。最后,该项目将创建培训资源(例如交互式操作指南),协调跨机构的学生实习,并举办实践研讨会来演示集成数据仓库的使用。该项目的最终目标是通过传播集成和开放的大数据和分析工具,促进社区主导和协作的因果发现。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Patient-specific modeling with personalized decision paths
具有个性化决策路径的患者特定建模
An Instance-Specific Algorithm for Learning the Structure of Causal Bayesian Networks Containing Latent Variables
On the completeness of causal discovery in the presence of latent confounding with tiered background knowledge
在存在潜在混杂和分层背景知识的情况下因果发现的完整性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Cooper其他文献

Thialfi: a client notification service for internet-scale applications
Thialfi:适用于互联网规模应用程序的客户端通知服务
Trends in occupational lead exposure since the 1978 OSHA lead standard.
自 1978 年 OSHA 铅标准出台以来职业铅暴露的趋势。
S394 Risk of Colorectal Cancer in Incarcerated Patients With Inflammatory Bowel Disease in the United States: A Population-Based Study
S394 美国被监禁的炎症性肠病患者患结直肠癌的风险:一项基于人群的研究
  • DOI:
    10.14309/01.ajg.0000951216.28503.1d
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Temitope Olasehinde;Jaime A. Perez;V. Chittajallu;J. Katz;Emad Mansoor;Gregory Cooper
  • 通讯作者:
    Gregory Cooper
Correspondence on: Methodological Standards When Reporting From National Databases.
通讯:从国家数据库报告时的方法标准。
  • DOI:
    10.1093/ibd/izae072
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Khadija Naseem;A. Sohail;Vu Nguyen;Ahmad Khan;Gregory Cooper;B. Lashner;Jeffry Katz;Fabio Cominelli;Miguel Regueiro;Emad Mansoor
  • 通讯作者:
    Emad Mansoor

Gregory Cooper的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Cooper', 18)}}的其他基金

ITR: Bayesian Modeling for Biosurveillance
ITR:生物监测贝叶斯建模
  • 批准号:
    0325581
  • 财政年份:
    2003
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Continuing Grant
Causal Discovery from a Mixture of Experimental and Observational Data
从实验和观察数据的混合中发现因果关系
  • 批准号:
    9812021
  • 财政年份:
    1998
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Continuing Grant
Learning Bayesian Networks that Contain Both Discrete and Continuous Variables
学习包含离散变量和连续变量的贝叶斯网络
  • 批准号:
    9509792
  • 财政年份:
    1995
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Continuing Grant
Improving the Cost Effectiveness of Health Care Through Machine Learning Applied to Large Clinical Databases
通过应用于大型临床数据库的机器学习提高医疗保健的成本效益
  • 批准号:
    9315428
  • 财政年份:
    1994
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Continuing Grant
Learning Probabilistic Networks from Databases
从数据库学习概率网络
  • 批准号:
    9111590
  • 财政年份:
    1991
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Continuing Grant

相似国自然基金

磁控溅射等离子体中旋转辐条模的形成机理及其对电子和离子输运性质的影响
  • 批准号:
    12305221
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
部分磁化等离子体中旋转辐条的系统研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型纤毛辐条蛋白的鉴定及功能研究
  • 批准号:
    31772456
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

BD Spokes: SPOKE: MIDWEST: Collaborative: Advanced Computational Neuroscience Network (ACNN)
BD 辐条:辐条:中西部:协作:高级计算神经科学网络 (ACNN)
  • 批准号:
    2148729
  • 财政年份:
    2021
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative: A Licensing Model and Ecosystem for Data Sharing
BD Spokes:SPOKE:NORTHEAST:协作:数据共享的许可模型和生态系统
  • 批准号:
    1947440
  • 财政年份:
    2019
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
  • 批准号:
    1636795
  • 财政年份:
    2017
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
  • 批准号:
    1636832
  • 财政年份:
    2017
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: MIDWEST: Collaborative: Integrative Materials Design (IMaD): Leverage, Innovate, and Disseminate
BD 辐条:辐条:中西部:协作:集成材料设计 (IMaD):利用、创新和传播
  • 批准号:
    1636950
  • 财政年份:
    2017
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了