Collaborative Research: Understanding and Optimizing Dynamic Stimulation for Improvement of Short- and Long-term Brain Function
合作研究:理解和优化动态刺激以改善短期和长期大脑功能
基本信息
- 批准号:1635542
- 负责人:
- 金额:$ 24.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The brain is an amazing organ which is responsible for a number of important functions including cognition, attention, emotion, perception, memory, and motor control. Many brain functions and disorders are believed to have a dynamical origin; for example, it has been hypothesized that some symptoms of Parkinson's disease are due to pathologically synchronized neural activity in the motor control region of the brain. Recent research suggests that an FDA-approved treatment for Parkinsonian tremors, called deep brain stimulation, is effective because it partially desynchronizes the neural activity via clustering, in which neurons in a subpopulation are synchronized with each other, but desynchronized with neurons in other subpopulations. This research will use engineering techniques, mathematical principles, computer simulations, and in vitro experiments to develop more energy-efficient electrical current stimuli which promote such clustering. Moreover, stimuli will be developed which enhance beneficial neural plasticity in which neurons change their connection strengths based on their activity patterns, work that may be important for treatment of diseases and for situations in which plasticity is desirable such as learning, memory, and recovery from strokes and spinal cord injury.This research will use engineering techniques, mathematical principles, computer simulations, and in vitro experiments to develop efficient electrical stimuli for controlling neural populations in beneficial ways. This will include designing power-minimized stimuli which cause a neural population to split into balanced clusters, in which each cluster contains a nearly identical proportion of the overall population and neighboring clusters are roughly equally spaced in phase, a state of partial desynchronization which recent work suggests is responsible for the success of the standard protocol for deep brain stimulation treatment of Parkinson's disease. Moreover, Hebbian models for synaptic plasticity will be used in combination with optimal control theory to design stimuli which optimally promote plasticity to give beneficial long-term changes in synaptic connections, work which is expected to have important implications for Parkinson's disease and other disorders such as epilepsy and depression, and for situations in which plasticity is desirable such as learning, memory, and recovery from strokes and spinal cord injury. The plasticity studies will also include in vitro brain slice experiments in which neurons will be synchronized to an oscillating electric field and stimulation applied through an electrode to generate balanced clusters, whose effect on synaptic strengths will be measured.
大脑是一个惊人的器官,负责许多重要功能,包括认知,注意力,情感,感知,记忆和运动控制。 人们认为许多大脑功能和疾病具有动态的起源。例如,已经假设帕金森氏病的某些症状是由于大脑运动控制区域的病理同步神经活动引起的。最近的研究表明,帕金森氏震颤的FDA批准治疗称为深脑刺激,这是有效的,因为它通过聚类部分使神经活动异步,其中亚群中的神经元在其他子群中彼此同步,但在其他子群中与神经元同步。这项研究将使用工程技术,数学原理,计算机模拟和体外实验来开发更节能的电流刺激,从而促进这种聚类。 此外,还将开发刺激,从而增强有益的神经可塑性,在这些神经元中,神经元根据其活动方式改变其连接强度,对疾病治疗可能很重要的工作以及对于可塑性的情况而言至关重要的工作,例如学习,记忆,记忆力以及从中风和脊髓损伤中恢复等可塑性。神经种群以有益的方式。 这将包括设计功率最小化的刺激,这会导致神经群体分为平衡的集群,其中每个群集包含几乎相同的总体人群和相邻簇的比例,在相位上大致相同,这是部分脱离的,最近的工作表明,这表明对Parkinson疾病的深度大脑刺激治疗的成功负责。 此外,HEBBIAN模型的突触可塑性将与最佳控制理论结合使用,以设计刺激,从而最佳地促进可塑性,从而为突触连接的长期变化提供了有益的长期变化。 可塑性研究还将包括体外脑切片实验,其中神经元将同步到振荡电场,并通过电极施加刺激以产生平衡的簇,其对突触强度的影响将被测量。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase model-based neuron stabilization into arbitrary clusters
基于相位模型的神经元稳定为任意簇
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:1.2
- 作者:Matchen, Timothy D.;Moehlis, Jeff
- 通讯作者:Moehlis, Jeff
Phase distribution control of a population of oscillators
一组振荡器的相位分布控制
- DOI:10.1016/j.physd.2019.06.001
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Monga, Bharat;Moehlis, Jeff
- 通讯作者:Moehlis, Jeff
Optimal phase control of biological oscillators using augmented phase reduction
- DOI:10.1007/s00422-018-0764-z
- 发表时间:2019-04-01
- 期刊:
- 影响因子:1.9
- 作者:Monga, Bharat;Moehlis, Jeff
- 通讯作者:Moehlis, Jeff
Real-time stabilization of neurons into clusters
- DOI:10.23919/acc.2017.7963376
- 发表时间:2017-05
- 期刊:
- 影响因子:0
- 作者:T. Matchen;J. Moehlis
- 通讯作者:T. Matchen;J. Moehlis
Synchronizing and Desynchronizing Neural Populations through Phase Distribution Control
通过相位分布控制同步和去同步神经群体
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Monga, Bharat;Froyland, Gary;Moehlis, Jeff
- 通讯作者:Moehlis, Jeff
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Moehlis其他文献
Controlling Spike Timing and Synchrony in Oscillatory Neurons.
控制振荡神经元的尖峰时序和同步。
- DOI:
10.1152/jn.00898.2010 - 发表时间:
2011 - 期刊:
- 影响因子:2.5
- 作者:
Tyler W. Stigen;P. Danzl;Jeffrey Moehlis;T. Netoff - 通讯作者:
T. Netoff
Jeffrey Moehlis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Moehlis', 18)}}的其他基金
A Novel Approach to System Identification using Artificial Neural Networks
使用人工神经网络进行系统识别的新方法
- 批准号:
2016004 - 财政年份:2020
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Optimal Termination of Spiral Waves Associated with Cardiac Arrhythmias
与心律失常相关的螺旋波的最佳终止
- 批准号:
1363243 - 财政年份:2014
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Collaborative research: Optimal stimulus waveform design for Parkinson's disease
合作研究:帕金森病的最佳刺激波形设计
- 批准号:
1264535 - 财政年份:2013
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Broadband Vibrational Energy Harvesting
宽带振动能量收集
- 批准号:
1131052 - 财政年份:2011
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
CAREER: Dynamics of Individual and Coupled Oscillators
职业:个体和耦合振荡器的动力学
- 批准号:
0547606 - 财政年份:2006
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Collaborative Research: MSPA-CSE: Equation-Free Modeling of Biological Self Organization: Coarse Computational Swarming
合作研究:MSPA-CSE:生物自组织的无方程建模:粗计算集群
- 批准号:
0434328 - 财政年份:2004
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
相似国自然基金
基于场景理解的全景视频智能压缩关键技术研究
- 批准号:62371310
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
- 批准号:62306239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度理解的大规模互联网虚假新闻检测研究
- 批准号:62302333
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多粒度跨模态信息驱动融合的意图理解及其情感机器人场景应用研究
- 批准号:62373334
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
复杂场景下的视频内容增强与理解研究
- 批准号:62372036
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331729 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant