Collaborative Research: A Resilience-based Seismic Design Methodology for Tall Wood Buildings
合作研究:基于弹性的高层木结构抗震设计方法
基本信息
- 批准号:1635227
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the U.S. population continues to grow in urban communities, the demand for tall residential and mixed-use buildings in the range of eight to twenty stories continues to increase. Buildings in this height range are commonly built using concrete or steel. A recent new timber structural innovation, known as cross laminated timber (CLT), was developed in western Europe and is now being implemented around the world as a sustainable and low carbon-footprint alternative to conventional structural materials for tall buildings. However, an accepted and validated design method for tall CLT buildings to resist earthquakes has not yet been developed, and therefore construction of these tall wood buildings in the United States has been limited. This research will break this barrier by investigating a seismic design methodology for resilient tall wood buildings that can be immediately re-occupied following a design level earthquake and quickly repaired (compared to current building systems) after a large earthquake. Using the seismic design methodology developed in this project, the research team will work with practitioners across the engineering and architectural communities to design, build, and validate the performance of a ten-story wood building by conducting full-scale sub-assembly system testing at the National Science Foundation (NSF)-supported Natural Hazards Engineering Research Infrastructure (NHERI) experimental facility at Lehigh University, followed by full-scale tests at the NSF-supported NHERI outdoor shake table at the University of California at San Diego. This research will enable a new sustainable construction practice that is also cost-competitive, thereby increasing demands for engineered wood production, providing added value for forest resources, and enhancing job growth in the construction and forestry sectors. As part of the research, the experimental programs will serve to provide outreach to the public and stakeholders on issues related to seismic hazard mitigation, modern timber engineering, and resilient building concepts.The goal of this research is to investigate and validate a seismic design methodology for tall wood buildings that incorporates high performance structural and non-structural systems. The methodology will quantitatively account for building resilience. This will be accomplished through a series of research tasks planned over a four-year period. These tasks will include mechanistic modeling of tall wood buildings with several variants of post-tensioned rocking CLT wall systems, fragility modeling of structural and non-structural building components that affect resilience, full-scale bi-directional testing of building sub-assembly systems, development of a resilience-based seismic design methodology, and finally a series of full-scale shake table tests of a ten-story CLT building specimen to validate the investigated design. The structural systems investigated will include post-tensioned CLT rocking walls in both monolithic and segmental rocking configurations. Implementing segmental rocking walls in a full building system will be a transformative concept that has yet to be realized physically. The rocking wall systems will be investigated under the context of holistic building behavior, including gravity systems and non-structural components. The research team will further push the boundary of existing performance-based seismic design by developing a design procedure that explicitly considers the time needed for the building to resume functionality after an earthquake. With the large-scale testing capacity provided by the NHERI experimental facilities, the design methodology will be experimentally validated, which will at the same time generate a landmark data set for tall wood buildings under dynamic loading that will be available to the broader research and practitioner community through the NHERI DesignSafe-ci.org Data Depot. The project will facilitate implementation of this new structural archetype by interfacing closely with practitioners in the Pacific Northwest interested in tall CLT buildings as a cost-competitive design option. Graduate and undergraduate students, including community college students, will actively participate in this research and gain valuable knowledge and experience, which will prepare them to become leaders in sustainable building practices using modern engineered wood materials.
随着美国人口在城市社区的不断增长,对八到二十层范围内的高层住宅和综合用途建筑的需求继续增加。 该高度范围内的建筑物通常是使用混凝土或钢建造的。 最近在西欧开发了一种新的新木结构创新,称为跨层压木材(CLT),现在正在世界各地实施,是一种可持续且低的碳足迹替代品,可替代高大建筑的常规结构材料。但是,尚未开发出一种公认和经过验证的设计方法来抵抗地震,因此在美国建造了这些高木建筑的建造受到限制。这项研究将通过调查一种弹性高木建筑的地震设计方法来打破这一障碍,在设计水平地震后可以立即重新占用,并在大地震发生后迅速修复(与当前的建筑系统相比)。使用该项目中开发的地震设计方法,研究团队将与整个工程和建筑社区的从业人员合作,通过在国家科学基金会(NSF)进行全面的子组装系统测试(NSF)进行全面的小组件测试(NSF),以设计,建造和验证十层木材建筑的性能(NSF),以实验性的工具基础构造(NSERIGH)的实验(Nerheri)的实验,并进行了实验。加利福尼亚大学圣地亚哥分校的NSF支持的NHERI户外摇桌。这项研究将使一种新的可持续建筑实践也具有成本竞争力,从而增加了对工程木材生产的需求,为森林资源提供了额外的价值,并增强了建筑和林业领域的工作增长。作为研究的一部分,实验计划将在与地震危险,现代木材工程和有弹性的建筑概念有关的问题上向公众和利益相关者提供宣传。该研究的目的是调查和验证高性能结构和非结构性系统的高层木材建筑的地震设计方法。该方法将定量解释建筑弹性。这将通过在四年内计划的一系列研究任务来完成。这些任务将包括对高木建筑的机械模型,并具有多种张紧后的摇摆CLT壁系统的变体,影响弹性的结构性和非结构性建筑物的脆弱性建模,建筑物子配置系统的全尺度双向测试,基于弹性的地震设计方法的开发以及一系列完整的摇摆式奶油抛光餐具,以及一系列构建的旋转式测试,以及一系列完整的奶油奶油奶油抛光效果。 设计。所研究的结构系统将包括整体和分段摇动构型的后CLT摇摆壁。 在完整的建筑系统中实现节圈墙壁将是一个变革性的概念,尚未实现。摇摆壁系统将在整体建筑行为的背景下进行研究,包括重力系统和非结构组件。研究团队将通过开发一个设计程序,从而明确考虑建筑物在地震后恢复功能所需的时间,从而进一步推动现有基于绩效的地震设计的边界。借助NHERI实验设施提供的大规模测试能力,设计方法将经过实验验证,同时,该方法将在动态载荷下生成一个具有里程碑意义的数据集,该数据集可通过NHERI Designsafe-ci.org Data Depot提供更广泛的研究和从业者社区。该项目将通过与对高个子CLT建筑物感兴趣的太平洋西北地区的从业人员紧密接触,以促进这种新的结构原型的实施。包括社区大学生在内的研究生和本科生将积极参与这项研究并获得宝贵的知识和经验,这将使他们准备使用现代工程木材材料成为可持续建筑实践的领导者。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development and Full-Scale Validation of Resilience-Based Seismic Design of Tall Wood Buildings: The NHERI Tallwood Project
基于弹性的高层木结构抗震设计的开发和全面验证:NHERI Tallwood 项目
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Pei, S.
- 通讯作者:Pei, S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Ricles其他文献
Innovative use of a shape memory alloy ring spring system for self-centering connections
创新地使用形状记忆合金环形弹簧系统进行自定心连接
- DOI:
10.1016/j.engstruct.2017.10.039 - 发表时间:
2017-12 - 期刊:
- 影响因子:5.5
- 作者:
Wei Wang;Cheng Fang;Xiao Yang;Yiyi Chen;James Ricles;Richard Sause - 通讯作者:
Richard Sause
Improving the Seismic Performance of Structural Steel Systems Through Advanced Testing
通过高级测试提高钢结构系统的抗震性能
- DOI:
10.1007/978-3-031-03811-2_6 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
James Ricles - 通讯作者:
James Ricles
James Ricles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Ricles', 18)}}的其他基金
Natural Hazards Engineering Research Infrastructure: Experimental Facility with Large-Scale, Multi-directional, Hybrid Simulation Testing Capabilities 2021-2025
自然灾害工程研究基础设施:具有大规模、多方位、混合模拟测试能力的实验设施2021-2025
- 批准号:
2037771 - 财政年份:2021
- 资助金额:
$ 38万 - 项目类别:
Cooperative Agreement
Natural Hazards Engineering Research Infrastructure: Experimental Facility with Large-Scale, Multi-directional, Hybrid Simulation Testing Capabilities
自然灾害工程研究基础设施:具有大规模、多方位、混合模拟测试能力的实验设施
- 批准号:
1520765 - 财政年份:2016
- 资助金额:
$ 38万 - 项目类别:
Cooperative Agreement
Collaborative Research: Semi-Active Controlled Cladding Panels for Multi-Hazard Resilient Buildings
合作研究:用于多灾害防御建筑的半主动控制覆层板
- 批准号:
1463497 - 财政年份:2015
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
NEESR Planning/Collaborative Research: Engineered Timber Structural Systems for Seismically Resilient Tall Buildings
NEESR 规划/合作研究:抗震高层建筑的工程木结构系统
- 批准号:
1344798 - 财政年份:2013
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Study of Soil-Structure Interaction Effects on Behavior and Damage to Structures in Washington, DC, during the August 23, 2011 Earthquake
快速/协作研究:2011 年 8 月 23 日地震期间华盛顿特区土壤-结构相互作用对行为和结构损坏的影响研究
- 批准号:
1219447 - 财政年份:2012
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Multi-Site Soil-Structure-Foundation Interaction Test (MISST)
多点土壤-结构-地基相互作用测试 (MISST)
- 批准号:
0407555 - 财政年份:2004
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Upgrade of NEES Real-time Multidirectional Earthquake Simulation System to Enhance 3-D Testing Capabilities
NEES实时多向地震模拟系统升级,增强三维测试能力
- 批准号:
0429184 - 财政年份:2004
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Real-time Multi-directional Testing Facility for Seismic Performance Simulation of Large-Scale Structural Systems
大型结构系统抗震性能模拟实时多向测试装置
- 批准号:
0217393 - 财政年份:2002
- 资助金额:
$ 38万 - 项目类别:
Cooperative Agreement
Experimental and Analytical Seismic Studies of MRF's and MRF-CBF Dual Systems with Concrete Filled Tube Members
具有混凝土填充管构件的 MRF 和 MRF-CBF 双系统的实验和分析地震研究
- 批准号:
9905870 - 财政年份:2000
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Frames with Partially Restrained Connections: A Workshop to be held in Atlanta, Georgia on September 23, 1998
具有部分受限连接的框架:将于 1998 年 9 月 23 日在佐治亚州亚特兰大举行的研讨会
- 批准号:
9805635 - 财政年份:1998
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
相似国自然基金
基于高分辨磁共振断层弹力成像在体评估胰腺癌细胞外间质重塑及肿瘤放化疗抵抗机制的研究
- 批准号:82371950
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
含水量对水凝胶超弹-粘弹力学行为的影响与本构理论研究
- 批准号:12202397
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
含水量对水凝胶超弹-粘弹力学行为的影响与本构理论研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于弹力骨架支撑的压电单晶薄膜采集心脏搏动能量并发电的实验研究
- 批准号:81970441
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
Elafin通过NE/EGFR-PI3K-Akt抑制NF-κB活化对炎症性肠病肠屏障保护性机制研究
- 批准号:81800492
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
- 批准号:
2348641 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Glacier resilience during the Holocene and late Pleistocene in northern California
合作研究:RUI:北加州全新世和晚更新世期间的冰川恢复力
- 批准号:
2303409 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
- 批准号:
2332082 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Standard Grant