Actor-Critic-Like Stochastic Adaptive Search Algorithms for Simulation Optimization

用于仿真优化的类似 Actor-Critic 的随机自适应搜索算法

基本信息

  • 批准号:
    1634627
  • 负责人:
  • 金额:
    $ 19.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Many systems arising in applications from engineering design, manufacturing, and health care require the use of simulation optimization techniques to improve their performance. However, despite significant progress in recent years, simulation optimization remains an area with many theoretical and practical challenges. This research project aims to expand the current knowledge in this field by investigating a novel approach that integrates theories and tools from reinforcement learning (a subarea of artificial intelligence) within a class of adaptive search algorithms called the model-based methods to solve simulation optimization problems. Because of the generality of these methodologies, the resulting techniques will have broad applicability in a wide array of industry and science sectors. In particular, through collaboration with power engineers, the developed algorithms will be tested and applied to voltage control problems in electric power systems, potentially benefiting both utility companies and energy consumers. The research plan will be closely integrated with the education and training of students in engineering by incorporating new developments into the graduate courses the investigator teaches and recruiting female and underrepresented minority students to the project.The goal of this research is to advance theoretical underpinnings of new model-based algorithms that can be orders of magnitude more efficient than the state-of-the-art. This will be accomplished by exploring the connections between model-based methods and policy gradient-based reinforcement-learning algorithms. Specifically, the investigator will examine how to use the insights from actor-critic algorithms in the reinforcement learning framework to effectively reduce the sampling variance of model-based methods. If successful, the approach will integrate function approximation techniques within a model-based optimization setting to provide algorithms with low-variance performance estimates in searching for improved solutions. This research may change the manner in which these algorithms are implemented and applied, leading to faster and more efficient algorithms for solving a broad class of optimization problems, especially in settings that require expensive function evaluations or simulations for performance estimation.
工程设计、制造和医疗保健等应用中出现的许多系统都需要使用仿真优化技术来提高其性能。然而,尽管近年来取得了重大进展,仿真优化仍然是一个面临许多理论和实践挑战的领域。该研究项目旨在通过研究一种新颖的方法来扩展该领域的当前知识,该方法将强化学习(人工智能的一个子领域)的理论和工具集成到一类称为基于模型的方法的自适应搜索算法中,以解决模拟优化问题。由于这些方法的通用性,由此产生的技术将在广泛的工业和科学领域具有广泛的适用性。特别是,通过与电力工程师的合作,开发的算法将被测试并应用于电力系统中的电压控制问题,这可能使公用事业公司和能源消费者受益。该研究计划将通过将新的发展纳入研究者教授的研究生课程中,并招募女性和代表性不足的少数族裔学生参与该项目,与工程专业学生的教育和培训紧密结合。这项研究的目标是推进新的理论基础基于模型的算法,其效率比最先进的算法高几个数量级。这将通过探索基于模型的方法和基于策略梯度的强化学习算法之间的联系来实现。具体来说,研究人员将研究如何在强化学习框架中使用演员批评算法的见解来有效减少基于模型的方法的采样方差。如果成功,该方法将在基于模型的优化设置中集成函数逼近技术,为算法提供低方差性能估计,以搜索改进的解决方案。这项研究可能会改变这些算法的实现和应用方式,从而产生更快、更有效的算法来解决广泛的优化问题,特别是在需要昂贵的函数评估或模拟来进行性能估计的情况下。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A minimum deviation approach for improving the consistency of uncertain 2-tuple linguistic preference relations
  • DOI:
    10.1016/j.cie.2018.01.024
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengbao Yao;Jiaqiao Hu
  • 通讯作者:
    Shengbao Yao;Jiaqiao Hu
A two-time-scale adaptive search algorithm for global optimization
Some Monotonicity Results for Stochastic Kriging Metamodels in Sequential Settings
序列设置中随机克里金元模型的一些单调性结果
  • DOI:
    10.1287/ijoc.2017.0779
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Wang, Bing;Hu, Jiaqiao
  • 通讯作者:
    Hu, Jiaqiao
Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization
基于替代的有前景区域搜索 Lipschitz 连续仿真优化
  • DOI:
    10.1287/ijoc.2017.0801
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Fan, Qi;Hu, Jiaqiao
  • 通讯作者:
    Hu, Jiaqiao
Enhancing Random Search with Surrogate Models for Lipschitz Continuous Optimization
使用 Lipschitz 连续优化的替代模型增强随机搜索
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiaqiao Hu其他文献

A stochastic search algorithm for voltage and reactive power control with switching costs and ZIP load model
具有切换成本和 ZIP 负载模型的电压和无功功率控制的随机搜索算法
  • DOI:
    10.1016/j.epsr.2015.12.025
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    E. Feinberg;Jiaqiao Hu;E. Yuan
  • 通讯作者:
    E. Yuan
Multi-stage Adaptive Sampling Algorithms
多级自适应采样算法
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Chang;Jiaqiao Hu;M. Fu;S. Marcus
  • 通讯作者:
    S. Marcus
Model-building semi-Markov adaptive critics
模型构建半马尔可夫自适应批评家
Model Reference Adaptive Search
模型参考自适应搜索
  • DOI:
    10.1007/978-1-4471-5022-0_4
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Chang;Jiaqiao Hu;M. Fu;S. Marcus
  • 通讯作者:
    S. Marcus
Dynamic hedge fund asset allocation under multiple regimes
多种制度下的动态对冲基金资产配置

Jiaqiao Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiaqiao Hu', 18)}}的其他基金

Collaborative Research: Continuous-State Reinforcement Learning for Remanufacturing
协作研究:再制造的连续状态强化学习
  • 批准号:
    2027527
  • 财政年份:
    2022
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: A New Paradigm for Simulation Optimization: Marriage between Expectation-Maximization and Model-Based Optimization
协作研究:仿真优化的新范式:期望最大化与基于模型的优化的结合
  • 批准号:
    1130761
  • 财政年份:
    2011
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Combining Gradient and Adaptive Search in Simulation Optimization
协作研究:在仿真优化中结合梯度和自适应搜索
  • 批准号:
    0900332
  • 财政年份:
    2009
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant

相似国自然基金

连续动作空间深度Actor-Critic算法研究
  • 批准号:
    61762032
  • 批准年份:
    2017
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
云计算中资源共享的分层博弈联盟形成与定价机制研究
  • 批准号:
    61379111
  • 批准年份:
    2013
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: CPS: Cooperative Neuro-Inspired Actor Critic Model for Anomaly Detection in Connected Vehicles
CRII:CPS:用于联网车辆异常检测的协作神经启发演员评论家模型
  • 批准号:
    2153510
  • 财政年份:
    2022
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
CRII: CPS: Cooperative Neuro-Inspired Actor Critic Model for Anomaly Detection in Connected Vehicles
CRII:CPS:用于联网车辆异常检测的协作神经启发演员评论家模型
  • 批准号:
    2313351
  • 财政年份:
    2022
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
The Bradbury Circle: The Writer, the Critic, and the University, 1955-2000
布拉德伯里圈:作家、批评家和大学,1955-2000
  • 批准号:
    2412160
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Studentship
Cotask-Aware Offloading and Scheduling in Mobile-Edge Computing Systems
移动边缘计算系统中的协同任务感知卸载和调度
  • 批准号:
    19K21539
  • 财政年份:
    2018
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Between roman and critic - Proust and the critic of nineteenth century
罗马人与批评家之间——普鲁斯特与十九世纪的批评家
  • 批准号:
    17H07111
  • 财政年份:
    2017
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了