NeTS: Small: Collaborative Research: Rethinking Erasure Codes for Cloud Storage: A Quantitative Framework for Latency, Reliability, and Cost Optimization

NeTS:小型:协作研究:重新思考云存储纠删码:延迟、可靠性和成本优化的定量框架

基本信息

  • 批准号:
    1618335
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

This project aims to develop an analytical framework that quantifies tail latency and reliability of erasure-coded storage through investigation of novel scheduling and repair strategies, mandating rethinking of erasure codes for online storage. As erasure coding is increasingly adopted by large-scale storage systems such as Microsoft Azure and Facebook, conventional approaches that primarily rely on system design heuristics has become inadequate in pushing the performance boundaries in terms of latency and reliability optimization. Quantifying tail latency and reliability of an erasure-coded storage that employs dynamic workload scheduling and online repair is an open problem. There exists little work illuminating the design space via mathematical crystallization of key tradeoffs and associated engineering "control knobs". This project will enable a joint optimization of latency, reliability and storage cost, which mandates rethinking of erasure-coded storage optimization and service pricing models. This proposal will concentrate on the following specific aspects: (1) Investigating a family of new probabilistic scheduling policies and extend order statistic analysis to derive closed-form bounds on tail latency for erasure-coded storage with arbitrary configurations, general service-time distributions, and potentially differentiated service classes. (2) Through a novel reliability metric, Time to Data Loss, The research will investigate online repair strategies that significantly improve reliability using a class of bandwidth-efficient codes, enabling a tradeoff between repair timeliness and reliability optimization. (3) Employ the theoretical analysis in this research to pursue a holistic solution that jointly optimizes reliability, latency, and storage costs over seven key control dimensions: choice of erasure codes, chunk placement, network resource allocation, cache management, dynamic scheduling, pricing, and online repair strategy. (4) Integrate the proposed framework with current cloud systems to bridge the gap between the theoretical results and practical systems. By developing new analytical models and algorithms for joint optimization of latency, reliability, and storage cost, the project will mandate rethinking of erasure-coded storage design and service pricing models. It will produces novel, interdisciplinary curriculum modules for teaching both these theories and systems.
该项目旨在开发一个分析框架,通过研究新颖的调度和修复策略来量化纠删码存储的尾部延迟和可靠性,要求重新考虑在线存储的纠删码。随着纠删码越来越多地被 Microsoft Azure 和 Facebook 等大型存储系统采用,主要依赖于系统设计启发式的传统方法已经不足以突破延迟和可靠性优化方面的性能界限。量化采用动态工作负载调度和在线修复的纠删码存储的尾部延迟和可靠性是一个悬而未决的问题。通过关键权衡和相关工程“控制旋钮”的数学结晶来阐明设计空间的工作很少。该项目将实现延迟、可靠性和存储成本的联合优化,这要求重新思考纠删码存储优化和服务定价模型。该提案将集中在以下具体方面:(1)研究一系列新的概率调度策略并扩展顺序统计分析,以导出具有任意配置、一般服务时间分布的纠删码存储的尾部延迟的封闭形式界限,以及潜在的差异化服务类别。 (2) 通过一种新颖的可靠性指标“数据丢失时间”,该研究将研究在线修复策略,使用一类带宽高效的代码显着提高可靠性,从而在修复及时性和可靠性优化之间进行权衡。 (3) 利用本研究中的理论分析来寻求整体解决方案,在七个关键控制维度上联合优化可靠性、延迟和存储成本:纠删码的选择、块放置、网络资源分配、缓存管理、动态调度、定价,以及在线修复策略。 (4)将所提出的框架与当前的云系统相集成,以弥合理论结果与实际系统之间的差距。通过开发新的分析模型和算法来联合优化延迟、可靠性和存储成本,该项目将要求重新思考纠删码存储设计和服务定价模型。它将产生新颖的跨学科课程模块来教授这些理论和系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vaneet Aggarwal其他文献

An Intelligent Learning Approach to Achieve Near-Second Low-Latency Live Video Streaming under Highly Fluctuating Networks
网络高波动下实现近秒低延时视频直播的智能学习方法
Prism Blockchain Enabled Internet of Things with Deep Reinforcement Learning
Prism 区块链通过深度强化学习实现物联网
  • DOI:
    10.1016/j.bcra.2024.100205
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Divija Swetha Gadiraju;Vaneet Aggarwal
  • 通讯作者:
    Vaneet Aggarwal
Multi-agent Covering Option Discovery based on Kronecker Product of Factor Graphs
基于因子图克罗内克积的多智能体覆盖选项发现
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiayu Chen;Jingdi Chen;Tian Lan;Vaneet Aggarwal
  • 通讯作者:
    Vaneet Aggarwal
Stochastic Top K-Subset Bandits with Linear Space and Non-Linear Feedback with Applications to Social Influence Maximization
具有线性空间和非线性反馈的随机顶级 K 子集强盗及其在社会影响力最大化中的应用
  • DOI:
    10.1145/3507787
  • 发表时间:
    2021-11-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mridul Agarwal;Vaneet Aggarwal;A. Umrawal;Christopher J. Quinn
  • 通讯作者:
    Christopher J. Quinn
Quantum Speedups in Regret Analysis of Infinite Horizon Average-Reward Markov Decision Processes
无限视野平均奖励马尔可夫决策过程的遗憾分析中的量子加速
  • DOI:
  • 发表时间:
    2023-10-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bhargav Ganguly;Yang Xu;Vaneet Aggarwal
  • 通讯作者:
    Vaneet Aggarwal

Vaneet Aggarwal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vaneet Aggarwal', 18)}}的其他基金

Conference: NSF WORKSHOP ON POST-QUANTUM AI
会议:美国国家科学基金会后量子人工智能研讨会
  • 批准号:
    2326996
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Conference: NSF WORKSHOP ON POST-QUANTUM AI
会议:美国国家科学基金会后量子人工智能研讨会
  • 批准号:
    2326996
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Sequential Decision Making Under Uncertainty With Submodular Rewards
合作研究:CIF:小:不确定性下的顺序决策与子模奖励
  • 批准号:
    2149588
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Communications with Energy Harvesting Nodes
CIF:小型:协作研究:与能量收集节点的通信
  • 批准号:
    1527486
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343618
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343619
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
  • 批准号:
    2312138
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
  • 批准号:
    2312139
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: Reliable Task Offloading in Mobile Autonomous Systems Through Semantic MU-MIMO Control
合作研究:NeTS:小型:通过语义 MU-MIMO 控制实现移动自治系统中的可靠任务卸载
  • 批准号:
    2134973
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了