Predicting Fiber Attrition during Processing of Long-Fiber Reinforced Composites using a Mechanistic Model Approach

使用机械模型方法预测长纤维增强复合材料加工过程中的纤维磨损

基本信息

  • 批准号:
    1633967
  • 负责人:
  • 金额:
    $ 29.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Due to their light weight and superior strength, Long Fiber-Reinforced Thermoplastics (LFTs) are used by the automotive and aerospace industries to manufacture critical load bearing structures. One of the major problems with LFTs is that the fibers that reinforce the plastic break during the molding process, compromising the strength of the final part. The fiber breakage also influences other concerns that manufacturers have when making these parts: how the fibers align (fiber orientation) and how they bunch up, leaving portions of the part without fibers (fiber density distribution). Therein lies the problem - it is the fibers that give a part strength. Today, manufacturing companies spend an enormous amount of time and resources trying to control the process to keep the fibers from breaking, bunching up or excessively orienting. They do this by repeatedly making prototypes until getting it right (trial-and-error). The computer simulation within this project can help the engineer visualize the fiber motion within the molding process, and thus solve the underlying problems before actually making a part. This project will result in a tool that industry can use to control the manufacturing process of discontinuous fiber-reinforced polymer composite structures, allowing engineers to make a part they know they can trust. With this increase in trust, these energy-efficient production methods for light weight parts will have a much wider acceptance. An increase in light parts will result in fuel efficiency in the transportation sector, significantly reducing CO2 emissions and directly supporting important worldwide climate change minimization strategies. Furthermore, being able to design LFT parts with confidence will unleash the potential of cost-competitive production of environmentally friendly, light weight and strong composite parts, and provide a technical edge to the automotive and aeronautical industries at a time when energy efficiency and innovation are needed.The modeling approach presented in this project is aimed at providing a tool required to understand and predict defects that arise in the molding of fiber reinforced composites, which today's simulation programs are not able to handle, in particular fiber attrition and fiber density distribution development during flow. The simulation in this project models the behavior of fiber suspensions at polymer processing concentrations using a single particle simulation approach for fiber bending and fiber breakage. The model represents each fiber in the system as a flexible chain of beam elements interconnected by nodes. Modeling flexible fibers is essential to properly understand behavior such as fiber jamming and fiber breakage, which is not accounted for when using the common rigid fiber assumption. The model researched here includes effects such as hydrodynamic forces, fiber flexibility, and excluded volume forces due to fiber-fiber and fiber-wall contacts. Results obtained with this simulation work will be validated with measurements conducted in controlled experimental set-ups at the PI's laboratories, and ultimately comparisons will be made with realist parts made by the PI's industrial partners. At the end of the project, the mechanistic model approach will be coupled to commercial software packages. The final product will allow the process engineer to predict process-induced fiber breakage as well as the properties of the final part during the design phase. Additionally, the processes can be modified to find optimal conditions, screw and gate geometries in order to minimize fiber attrition and achieve ideal fiber length distributions. The final tool will be the first model that incorporates and couples all three fiber properties and their interactions: fiber orientation, fiber density and fiber length distributions. With a higher level of understanding of the fiber motion phenomena during molding it will eventually be possible to mass produce polymer composite parts with increased properties and controlled quality making light weight polymer composites available to a wider range of applications.
由于重量轻、强度高,长纤维增强热塑性塑料 (LFT) 被汽车和航空航天工业用来制造关键承载结构。 LFT 的主要问题之一是增强塑料的纤维在成型过程中断裂,从而损害最终部件的强度。纤维断裂还会影响制造商在制造这些零件时所关心的其他问题:纤维如何排列(纤维取向)以及它们如何聚束,从而使零件的某些部分没有纤维(纤维密度分布)。问题就在这里——纤维赋予了零件强度。如今,制造公司花费大量时间和资源试图控制流程,以防止纤维断裂、聚拢或过度定向。他们通过反复制作原型直到成功(反复试验)来做到这一点。该项目中的计算机模拟可以帮助工程师可视化成型过程中的纤维运动,从而在实际制造零件之前解决根本问题。该项目将产生一种工具,工业界可以使用它来控制不连续纤维增强聚合物复合材料结构的制造过程,使工程师能够制造出他们知道可以信赖的零件。随着信任的增加,这些轻质零件的节能生产方法将得到更广泛的接受。轻型部件的增加将提高运输行业的燃油效率,显着减少二氧化碳排放,并直接支持重要的全球气候变化最小化战略。此外,能够充满信心地设计 LFT 零件将释放出具有成本竞争力的环保、轻质和坚固复合材料零件生产的潜力,并在能源效率和创新日益重要的时代为汽车和航空工业提供技术优势。该项目中提出的建模方法旨在提供一种工具,用于理解和预测纤维增强复合材料成型过程中出现的缺陷,而当今的模拟程序无法处理这些缺陷,特别是纤维磨损和纤维密度分布开发流动期间。该项目中的模拟使用纤维弯曲和纤维断裂的单粒子模拟方法来模拟聚合物加工浓度下纤维悬浮液的行为。该模型将系统中的每根光纤表示为由节点互连的灵活的梁单元链。对柔性纤维进行建模对于正确理解纤维堵塞和纤维断裂等行为至关重要,而在使用常见的刚性纤维假设时并未考虑到这一点。这里研究的模型包括水动力、纤维柔韧性以及由于纤维-纤维和纤维-壁接触而排除的体积力等效应。通过该模拟工作获得的结果将通过在 PI 实验室的受控实验装置中进行的测量进行验证,并最终将与 PI 工业合作伙伴制造的现实零件进行比较。在项目结束时,机械模型方法将与商业软件包相结合。最终产品将使工艺工程师能够在设计阶段预测工艺引起的纤维断裂以及最终部件的性能。此外,可以修改工艺以找到最佳条件、螺杆和浇口几何形状,从而最大限度地减少纤维磨损并实现理想的纤维长度分布。最终的工具将是第一个包含并耦合所有三种纤维特性及其相互作用的模型:纤维取向、纤维密度和纤维长度分布。 随着对成型过程中纤维运动现象的更高水平的了解,最终将有可能批量生产具有更高性能和受控质量的聚合物复合材料部件,从而使轻质聚合物复合材料可用于更广泛的应用。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DIRECT FIBER MODEL VALIDATION: ORIENTATION EVOLUTION IN SIMPLE SHEAR FLOW
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Simon;A. Senior;T. Osswald
  • 通讯作者:
    S. Simon;A. Senior;T. Osswald
Experimental Study on Fiber Attrition of Long Glass Fiber-Reinforced Thermoplastics under Controlled Conditions in a Couette Flow
库埃特流中受控条件下长玻璃纤维增​​强热塑性塑料纤维磨损的实验研究
Experimental study of particle migration in polymer processing
  • DOI:
    10.1002/pc.25018
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Quintana, Jose Luis Colon;Heckner, Tobias;Osswald, Tim
  • 通讯作者:
    Osswald, Tim
Experimental and Numerical Analysis of Fiber Matrix Separation during Compression Molding of Long Fiber Reinforced Thermoplastics
长纤维增强热塑性塑料压缩成型过程中纤维基体分离的实验和数值分析
  • DOI:
    10.3390/jcs1010002
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Kuhn, Christoph;Walter, Ian;Taeger, Olaf;Osswald, Tim
  • 通讯作者:
    Osswald, Tim
Simulative Prediction of Fiber-Matrix Separation in Rib Filling During Compression Molding Using a Direct Fiber Simulation
使用直接纤维模拟模拟预测压缩成型过程中肋填充中的纤维基体分离
  • DOI:
    10.3390/jcs2010002
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Kuhn, Christoph;Walter, Ian;Täger, Olaf;Osswald, Tim
  • 通讯作者:
    Osswald, Tim
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tim Osswald其他文献

Tim Osswald的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tim Osswald', 18)}}的其他基金

Modeling Fiber-Matrix Separation and Fiber Jamming During Processing of Fiber Filled Composites
纤维填充复合材料加工过程中纤维基体分离和纤维堵塞的建模
  • 批准号:
    1029142
  • 财政年份:
    2010
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Standard Grant
An Operating Center Proposal for Renewing an Industry/University Cooperative Research Center for Advanced Polymer and Composite Engineering
关于更新先进聚合物和复合材料工程产学合作研究中心的运营中心提案
  • 批准号:
    0225080
  • 财政年份:
    2002
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Continuing Grant
Polymer Engineering Center at University of Wisconsin-Madison
威斯康星大学麦迪逊分校聚合物工程中心
  • 批准号:
    0200076
  • 财政年份:
    2002
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Standard Grant
U.S.-Germany Cooperative Research: Study of Thermomechanical Property Development during Cure of Thermosetting Resins Used in Composite Parts
美德合作研究:复合材料部件用热固性树脂固化过程中热机械性能的发展研究
  • 批准号:
    9907988
  • 财政年份:
    2000
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Standard Grant
Development of a Non-Isothermal, Non-Newtonian Flow Simulation for Mixing Polymer Blends
开发用于混合聚合物共混物的非等温、非牛顿流动模拟
  • 批准号:
    9634701
  • 财政年份:
    1996
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Continuing Grant
Enhanced Monitoring of Polymer Processing Operations via Infrared Pyrometry
通过红外高温测量增强聚合物加工操作的监控
  • 批准号:
    9313318
  • 财政年份:
    1994
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Continuing Grant
An Investigation of the Thermomechanical Behavior of Fiber Reinforced Thermoset Composite Parts
纤维增强热固性复合材料零件热机械行为的研究
  • 批准号:
    9215287
  • 财政年份:
    1992
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award: Polymer Processing, Modelling and Simulation
总统青年研究员奖:聚合物加工、建模和仿真
  • 批准号:
    9158145
  • 财政年份:
    1991
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Continuing Grant
Research Initiation: Investigation of the Thermomechanical Behavior of Compression Molded Fiber Reinforced Composite Parts
研究启动:压缩成型纤维增强复合材料零件的热机械行为研究
  • 批准号:
    9009158
  • 财政年份:
    1990
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Standard Grant

相似国自然基金

瘢痕疙瘩成纤维细胞外泌体miR-210通过靶向调控EFNA3/PI3K通路促进瘢痕疙瘩血管新成的作用及机制研究
  • 批准号:
    82360616
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
SRB1+肿瘤相关成纤维细胞对肝癌免疫治疗疗效双向调节作用的机制研究
  • 批准号:
    82373318
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于胆碱能皮层投射纤维探讨脑小血管病在帕金森病步态障碍中的作用及机制研究
  • 批准号:
    82301663
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双向驱动纳米机器人调控成纤维细胞SIRT3表达在治疗输尿管狭窄中的应用及机制研究
  • 批准号:
    82370701
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
碳/玄武岩混杂纤维钛基金属层合板力学性能及损伤失效机理研究
  • 批准号:
    12372348
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
  • 批准号:
    10751224
  • 财政年份:
    2024
  • 资助金额:
    $ 29.88万
  • 项目类别:
CAREER: Additive Manufacturing of Structural Battery Carbon Fiber Reinforced Composites
职业:结构电池碳纤维增强复合材料的增材制造
  • 批准号:
    2340090
  • 财政年份:
    2024
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Standard Grant
I-Corps: Imaging and locating geothermal resources using distributed acoustic sensing deployed on telecommunication fiber cables
I-Corps:使用部署在电信光缆上的分布式声学传感对地热资源进行成像和定位
  • 批准号:
    2344558
  • 财政年份:
    2024
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Standard Grant
Arlene George F32
阿琳·乔治 F32
  • 批准号:
    10722238
  • 财政年份:
    2024
  • 资助金额:
    $ 29.88万
  • 项目类别:
Developmental mechanisms specifying vagal innervation of organ targets
指定器官目标迷走神经支配的发育机制
  • 批准号:
    10752553
  • 财政年份:
    2024
  • 资助金额:
    $ 29.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了