DMREF: Collaborative Research: Emergent Functionalities in 3d/5d Multinary Chalcogenides and Oxides
DMREF:协作研究:3d/5d 多元硫属化物和氧化物中的新兴功能
基本信息
- 批准号:1629079
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical abstractThis research program is focused on understanding and enlarging the class of materials in which atoms from the bottom rows of the periodic table play an important role. Crystalline compounds containing these elements have an interrelated set of properties including strong coupling between electron motion and spin, unusual magnetic behavior, broader electronic energy bands, and a tendency to pairwise attraction of neighboring atoms. Special attention is given to the exploration of layered materials that include tellurium, as these show a wide variety of structural motifs. First-principles computational methods are used to investigate candidate materials of this class, identifying those that appear most promising as targets for directed synthesis and in-depth experimental study. Comparisons between theory and experiment provide feedback to refocus the theoretical and computational effort. The team provides capabilities in bulk and thin-film materials growth coupled to characterization using optical, scattering, and scanning-probe techniques. The activity provides educational opportunities through the involvement of undergraduates in research, the coordination with outreach programs at the Liberty Science Center in New Jersey, and the organization of topical workshops and conferences.Technical AbstractInterest in 5d materials and 3d/5d hybrids has blossomed in recent years in response to scientific advances and applications in the areas of hard magnets, topological insulators, multiferroics, superconductors, and thermoelectrics. These materials are unique for several reasons. First, strong spin-orbit coupling competes with magnetic, crystal-field, many-body Coulomb, and other interactions in such a way as to drive new physical behaviors, such as the effective spin 1/2 state that emerges in certain iridates. Second, the bonding interactions associated with the larger size of the 5d orbitals promotes inter-cation dimerization in pairwise, chain-like, and other complex orderings. Third, the relativistic shifts in orbital energies, combined with spin-orbit coupling and bandwidth effects, can drive band inversions leading to topological phases and enhanced Rashba splittings. In 3d/5d hybrid materials, the interplay of these properties with the strong magnetic moments and correlation effects associate with the3d ions provides greater chemical flexibility and functional richness. The goal of the present project is to improve the understanding of how spin-orbit coupling enhances functionality in compounds containing 3d and 5d ions, and clarify how properties depend on control parameters such as spin-orbit strength, d-shell filling, dimensionality, and structural distortions. Specifically, the activity consists of a concerted theoretical and experimental exploration of materials in which 3d and 5d transition-metal sites coexist in multicomponent chalcogenide and oxide crystals and films. The unique physical and chemical properties of these materials provide a platform for a materials discovery paradigm in which first-principles computational methods are used to investigate candidate materials, identifying those that appear most promising as targets for directed synthesis and in-depth experimental study. Target materials systems include under-explored binary 5d tellurides, ternary 3d-5d tellurides and selenides, 3d-5d chalcogenide superlattices, and 3d-5d hexagonal chain compounds. The research also targets the synthesis of new materials and nanostructures for topological states including quantum anomalous Hall, strong topological insulator, and Weyl semimetal phases.The methods used in the research are diverse. Comparison between theory and experiment provides feedback to refocus the theoretical and computational effort, which is carried out using first-principles methods including density-functional theory and dynamical mean-field theory. The team provides capabilities in both bulk and thin-film (molecular beam epitaxy and pulsed-laser deposition) growth, while the understanding and optimization of the unique materials properties is facilitated using X-ray, optical, scanning tunneling, transport, and neutron scattering techniques.
非技术摘要该研究计划的重点是理解和扩大元素周期表底行原子发挥重要作用的材料类别。 含有这些元素的晶体化合物具有一组相互关联的特性,包括电子运动和自旋之间的强耦合、不寻常的磁性行为、更宽的电子能带以及相邻原子成对吸引的趋势。特别关注包括碲在内的层状材料的探索,因为它们显示出各种各样的结构图案。第一原理计算方法用于研究此类候选材料,识别那些最有希望作为定向合成和深入实验研究目标的材料。理论和实验之间的比较提供反馈,以重新集中理论和计算工作。该团队提供块体和薄膜材料生长以及使用光学、散射和扫描探针技术进行表征的能力。该活动通过本科生参与研究、与新泽西州自由科学中心的外展项目协调以及组织专题研讨会和会议来提供教育机会。技术摘要近年来,人们对 5d 材料和 3d/5d 混合体的兴趣日益浓厚多年来,响应硬磁体、拓扑绝缘体、多铁性、超导体和热电领域的科学进步和应用。这些材料之所以独特,有几个原因。首先,强自旋轨道耦合与磁场、晶体场、多体库仑和其他相互作用竞争,从而驱动新的物理行为,例如在某些虹膜中出现的有效自旋 1/2 态。 其次,与较大尺寸的 5d 轨道相关的键合相互作用促进了成对、链状和其他复杂有序的阳离子间二聚化。 第三,轨道能量的相对论变化与自旋轨道耦合和带宽效应相结合,可以驱动能带反转,从而导致拓扑相和增强的拉什巴分裂。在 3d/5d 混合材料中,这些特性与强磁矩以及与 3d 离子相关的相关效应的相互作用提供了更大的化学灵活性和功能丰富性。本项目的目标是加深对自旋轨道耦合如何增强含有 3d 和 5d 离子的化合物功能的理解,并阐明特性如何取决于控制参数,例如自旋轨道强度、d 壳填充、维数和结构扭曲。具体来说,该活动包括对 3d 和 5d 过渡金属位点在多组分硫族化物和氧化物晶体和薄膜中共存的材料进行协调一致的理论和实验探索。这些材料独特的物理和化学性质为材料发现范式提供了一个平台,其中第一原理计算方法用于研究候选材料,识别那些最有希望作为定向合成和深入实验研究目标的材料。目标材料系统包括正在开发的二元5d碲化物、三元3d-5d碲化物和硒化物、3d-5d硫族化物超晶格和3d-5d六方链化合物。该研究还针对拓扑态新材料和纳米结构的合成,包括量子反常霍尔、强拓扑绝缘体和Weyl半金属相。研究中使用的方法多种多样。理论与实验之间的比较提供了反馈,以重新集中理论和计算工作,这是使用包括密度泛函理论和动态平均场理论在内的第一原理方法进行的。 该团队提供体膜和薄膜(分子束外延和脉冲激光沉积)生长的能力,同时利用 X 射线、光学、扫描隧道、传输和中子散射促进对独特材料特性的理解和优化技术。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Band-Mott mixing hybridizes the gap in Fe2Mo3O8
- DOI:10.1103/physrevb.104.195143
- 发表时间:2021-11
- 期刊:
- 影响因子:3.7
- 作者:K. Park;G. Pascut;G. Khanal;M. Yokosuk;Xianghan Xu;B. Gao;M. Gutmann;A. Litvinchuk;V. Kiryukhin;S. Cheong;D. Vanderbilt;K. Haule;J. Musfeldt
- 通讯作者:K. Park;G. Pascut;G. Khanal;M. Yokosuk;Xianghan Xu;B. Gao;M. Gutmann;A. Litvinchuk;V. Kiryukhin;S. Cheong;D. Vanderbilt;K. Haule;J. Musfeldt
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janice Musfeldt其他文献
Janice Musfeldt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janice Musfeldt', 18)}}的其他基金
Molecular Multiferroics, Quantum Magnets, and Spin Qubits under External Stimuli
外部刺激下的分子多铁性、量子磁体和自旋量子位
- 批准号:
2342425 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Chemical imaging of sheets, surfaces, and interfaces
板材、表面和界面的化学成像
- 批准号:
2129904 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Magnetically-Driven Transitions in Molecule-Based Materials
分子材料中的磁驱动转变
- 批准号:
1707846 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Enhanced functionalities in 5d transition-metal compounds from large spin-orbit coupling
DMREF/合作研究:通过大自旋轨道耦合增强 5d 过渡金属化合物的功能
- 批准号:
1233118 - 财政年份:2012
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Spectroscopy of molecule-based materials in high magnetic fields
高磁场中分子材料的光谱学
- 批准号:
1063880 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Low-Energy Optical Spectroscopy as a Probe of Structure-Property Relations in Organic Solids
低能光谱学作为有机固体结构-性能关系的探针
- 批准号:
0600089 - 财政年份:2006
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Chemical Structure/Physical Property Relationships in Layered Organic Solids as Investigated via Vibrational Spectroscopy
通过振动光谱研究层状有机固体的化学结构/物理性质关系
- 批准号:
0139414 - 财政年份:2002
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
U.S.-Poland Research on Electrodynamics in Organic Molecular Solids: A Cooperative Study
美国-波兰有机分子固体电动力学研究:合作研究
- 批准号:
0086475 - 财政年份:2001
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Crystal Growth and Spectroscopy of Impurity Substituted Spin-Peierls Materials
美法合作研究:杂质取代自旋佩尔斯材料的晶体生长和光谱学
- 批准号:
0089575 - 财政年份:2001
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
- 批准号:
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
- 批准号:52305539
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
- 批准号:62371149
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
- 批准号:62362017
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant