Collaborative Research: Propagation of Dissipation: Stochastic Stabilization in Finite and Infinite Dimensions
合作研究:耗散传播:有限和无限维中的随机稳定
基本信息
- 批准号:1613337
- 负责人:
- 金额:$ 22.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Randomness is everywhere in modern science and technology. It underlies models of air turbulence, chemical dynamics, and algorithms for big data. Such models are often high dimensional or even infinite dimensional, as in the case of turbulence. Central to understanding these systems is understanding the way both energy and randomness are spread by nonlinear interactions in the dynamics. This research project explores a number of directions that exploit both the geometric and algebraic structures of such systems to better understand these basic transport phenomena. The investigators will work to understand how such interactions can lead to stabilization in systems that are unstable in the absence of randomness. The project includes research participation by graduate, undergraduate, and high-school students. At the high school level, the investigators will also work to keep the students' teachers connected with cutting-edge mathematics, helping them to be more effective and better informed as teachers. In addition, videos chronicling the student research efforts will be made in collaboration with a center for documentary films to further disseminate the experience and broaden the project's impact. This collaborative research project in stochastic analysis and dynamics will explore the propagation of noise and dissipation in stochastic systems and their effects on the existence and structure of stationary states. There is particular emphasis on effects that occur in stochastic partial differential equations, the ability of noise to stabilize unstable systems, and non-equilibrium steady-states in forced systems. Many of the equations to be investigated are physical models (e.g. from fluid mechanics or non-equilibrium statistical physics) while other equations to be studied serve as examples that aid in understanding the underlying mechanisms producing stability or instability in such systems. This work will build on the investigators' previous work in designing Lyapunov functions in the finite-dimensional setting of stochastic ordinary differential equations (SODEs) and establishing practical methods for proving unique ergodicity and convergence to equilibrium in both the finite-dimensional setting of SODEs as well as the infinite-dimensional setting of SPDEs. While the research is anticipated to have immediate implications in fluid mechanics and statistical physics, the techniques that will result from studying such systems will be applicable to a wide family of problems in other areas, such as biology, engineering, physics, and finance, which regularly employ stochastic ordinary and partial differential equations as modeling tools.
现代科学技术中随机性无处不在。它是空气湍流、化学动力学和大数据算法模型的基础。此类模型通常是高维的,甚至是无限维的,就像湍流的情况一样。理解这些系统的核心是理解能量和随机性通过动力学中的非线性相互作用传播的方式。该研究项目探索了许多利用此类系统的几何和代数结构的方向,以更好地理解这些基本的传输现象。研究人员将努力了解这种相互作用如何使在缺乏随机性的情况下不稳定的系统变得稳定。该项目包括研究生、本科生和高中生的研究参与。 在高中阶段,研究人员还将努力让学生的老师与前沿数学保持联系,帮助他们作为教师更有效、更了解情况。此外,还将与纪录片中心合作制作记录学生研究工作的视频,以进一步传播经验并扩大项目的影响。这个随机分析和动力学合作研究项目将探讨随机系统中噪声和耗散的传播及其对稳态存在和结构的影响。特别强调随机偏微分方程中出现的效应、噪声稳定不稳定系统的能力以及受迫系统中的非平衡稳态。许多要研究的方程是物理模型(例如,来自流体力学或非平衡统计物理学),而其他要研究的方程作为示例,有助于理解在此类系统中产生稳定性或不稳定性的潜在机制。这项工作将建立在研究人员之前的工作基础上,即在随机常微分方程 (SODE) 的有限维设置中设计 Lyapunov 函数,并建立实用方法来证明 SODE 的有限维设置中的独特遍历性和收敛到平衡:以及 SPDE 的无限维设置。虽然这项研究预计将对流体力学和统计物理学产生直接影响,但研究此类系统所产生的技术将适用于其他领域的广泛问题,例如生物学、工程、物理学和金融。经常使用随机常微分方程和偏微分方程作为建模工具。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scaling limits of a model for selection at two scales
两个尺度选择模型的尺度限制
- DOI:10.1088/1361-6544/aa5499
- 发表时间:2017-04
- 期刊:
- 影响因子:1.7
- 作者:Luo, Shishi;Mattingly, Jonathan C
- 通讯作者:Mattingly, Jonathan C
On Unique Ergodicity in Nonlinear Stochastic Partial Differential Equations
非线性随机偏微分方程的唯一遍历性
- DOI:10.1007/s10955-016-1605-x
- 发表时间:2015-12-13
- 期刊:
- 影响因子:1.6
- 作者:N. Glatt;Jonathan C. Mattingly;Geordie Richards
- 通讯作者:Geordie Richards
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Mattingly其他文献
Numerical methods for stochastic differential equations based on Gaussian mixture
基于高斯混合的随机微分方程数值方法
- DOI:
10.4310/cms.2021.v19.n6.a5 - 发表时间:
2021 - 期刊:
- 影响因子:1
- 作者:
Lei Li;Jianfeng Lu;Jonathan Mattingly;Lihan Wang - 通讯作者:
Lihan Wang
Jonathan Mattingly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Mattingly', 18)}}的其他基金
Southeastern Probability Conference 2017: Special Edition Interacting Particle Systems with Applications in Biology, Ecology, and Statistical Physics
2017 年东南概率会议:特别版相互作用粒子系统及其在生物学、生态学和统计物理学中的应用
- 批准号:
1719189 - 财政年份:2017
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
- 批准号:
0854879 - 财政年份:2009
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
CAREER: Stochastic analysis and numerics in partial differential equations and extended dynamical systems
职业:偏微分方程和扩展动力系统中的随机分析和数值
- 批准号:
0449910 - 财政年份:2005
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
MSPRF: Stochastic PDSs and Multiscale Phenomena
MSPRF:随机 PDS 和多尺度现象
- 批准号:
9971087 - 财政年份:1999
- 资助金额:
$ 22.86万 - 项目类别:
Fellowship Award
相似国自然基金
GNSS备份系统传播路径定位误差预测方法研究
- 批准号:62301106
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于真菌的跨界群体感应干扰对水环境抗生素抗性基因传播的影响及调控研究
- 批准号:42307159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高阶相互作用下的复杂网络信息传播动力学研究
- 批准号:12305043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有阻断新冠病毒传播潜力的PP-sNp制剂增强亚单位疫苗黏膜免疫应答的作用机制研究
- 批准号:32370993
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多耦合部件故障传播模型下的牵引系统寿命预测研究
- 批准号:62303414
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247395 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247396 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Continuing Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247398 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant