Expanding the Computational Statistics Toolbox for General Hierarchical Models

扩展通用分层模型的计算统计工具箱

基本信息

  • 批准号:
    1622444
  • 负责人:
  • 金额:
    $ 19.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Hierarchical statistical models allow analysis of patterns in complex data while accounting for relationships such as temporal or spatial patterns or shared sampling units. A great variety of analysis algorithms for hierarchical models have been developed by statistical researchers but are unavailable to practitioners such as social scientists and biologists. The NIMBLE software platform was developed to bridge this gap and make it easier for scientists to use a variety of algorithms on their specific datasets. In particular NIMBLE provides a programming environment in which researchers can implement algorithms that can then be easily used by others in the context of specific datasets. The work under this project will extend NIMBLE to provide computational methods for working with very flexible statistical methods known as Bayesian nonparametric methods. These methods allow researchers to summarize variables and quantify relationships between different variables in an analysis while making fewer assumptions than standard statistical approaches. While Bayesian nonparametric methods have developed substantially in the last 10-15 years, many of these methods are hard or time-consuming for those working with data to implement on their own. This project will implement many such methods in the NIMBLE software, thereby providing them to practitioners to use in their day-to-day analyses. Moreover, it will provide a foundation for ongoing development and sharing of new and improved such methods in the future.A large amount of research aims to improve the intertwined statistical and computational methods for analysis of hierarchical statistical models. Such research is important because problem-specific hierarchical models facilitate rapid advances in many scientific fields. However, statistical researchers have lacked a flexible software platform designed for programming and disseminating the many varieties of algorithms such as Markov chain Monte Carlo, sequential Monte Carlo, and methods that build upon them. The NIMBLE system provides such a software platform. This project helps to further fill that gap by extending the NIMBLE system to enable use of Bayesian nonparametric methods, with a focus on nonparametric mixture models, of which the Dirichlet process model and related models are widely-known. This extension will allow routine application of these nonparametric mixture models as prior distributions for parts of arbitrary hierarchical models. The project will implement a variety of techniques for fitting Bayesian nonparametric mixtures, focusing on both collapsed and blocked samplers in Markov chain Monte Carlo algorithms. Such techniques methods have been highly developed by specialists but are limited in their research and scientific applications by lack of general implementation.
分层统计模型允许分析复杂数据中的模式,同时考虑时间或空间模式或共享采样单元等关系。统计研究人员已经开发了多种用于层次模型的分析算法,但社会科学家和生物学家等从业者却无法使用。 NIMBLE 软件平台的开发就是为了弥补这一差距,使科学家能够更轻松地在其特定数据集上使用各种算法。特别是,NIMBLE 提供了一个编程环境,研究人员可以在其中实现算法,然后其他人可以在特定数据集的上下文中轻松使用这些算法。 该项目下的工作将扩展 NIMBLE 以提供计算方法,以使用非常灵活的统计方法(称为贝叶斯非参数方法)。这些方法允许研究人员总结变量并量化分析中不同变量之间的关系,同时比标准统计方法做出更少的假设。虽然贝叶斯非参数方法在过去 10-15 年中得到了长足的发展,但对于那些自己处理数据的人来说,其中许多方法都很困难或耗时。该项目将在 NIMBLE 软件中实施许多此类方法,从而将它们提供给从业者在日常分析中使用。此外,它将为未来持续开发和共享新的和改进的此类方法奠定基础。大量研究旨在改进用于分析分层统计模型的相互交织的统计和计算方法。此类研究很重要,因为特定问题的层次模型促进了许多科学领域的快速发展。然而,统计研究人员缺乏一个灵活的软件平台,用于编程和传播多种算法,例如马尔可夫链蒙特卡罗、顺序蒙特卡罗以及基于它们的方法。 NIMBLE系统提供了这样一个软件平台。该项目通过扩展 NIMBLE 系统以支持使用贝叶斯非参数方法,有助于进一步填补这一空白,重点关注非参数混合模型,其中狄利克雷过程模型和相关模型广为人知。此扩展将允许将这些非参数混合模型作为任意分层模型部分的先验分布进行常规应用。该项目将实施各种用于拟合贝叶斯非参数混合的技术,重点关注马尔可夫链蒙特卡罗算法中的折叠和阻塞采样器。这些技术方法已被专家高度开发,但由于缺乏普遍实施而在研究和科学应用中受到限制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Perry de Valpine其他文献

Perry de Valpine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Perry de Valpine', 18)}}的其他基金

Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2152860
  • 财政年份:
    2022
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
SI2-SSI: Integrating the NIMBLE Statistical Algorithm Platform with Advanced Computational Tools and Analysis Workflows
SI2-SSI:将 NIMBLE 统计算法平台与高级计算工具和分析工作流程集成
  • 批准号:
    1550488
  • 财政年份:
    2016
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
ABI Development: An extensible software platform for integrating multiple sources of data and uncertainty using hierarchical statistical models
ABI 开发:一个可扩展的软件平台,用于使用分层统计模型集成多个数据源和不确定性
  • 批准号:
    1147230
  • 财政年份:
    2012
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
More realistic statistical models for stage-structured time-series data
针对阶段结构时间序列数据的更真实的统计模型
  • 批准号:
    1021553
  • 财政年份:
    2010
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant

相似国自然基金

顺层边坡变形调控新结构——让剪让压型锚拉桩的承载机理与计算方法
  • 批准号:
    52378327
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向计算密集型应用的新型计算范式及其加速器关键技术
  • 批准号:
    62374108
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于多精度计算机试验的航空设备多函数型响应质量设计研究
  • 批准号:
    72371128
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
计算奇异值分解和广义奇异值分解的Jacobi-Davidson型迭代方法
  • 批准号:
    12301485
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超宽禁带半导体固溶体合金中p型透明导电氧化物材料设计与计算分析
  • 批准号:
    12374074
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Computational Statistics to Tackle Modern Slavery
解决现代奴隶制问题的计算统计
  • 批准号:
    MR/X034992/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Fellowship
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
Data Science and Statistics Core
数据科学和统计核心
  • 批准号:
    10549489
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
Computational Strategies to Tailor Existing Interventions for First Major Depressive Episodes to Inform and Test Personalized Interventions
针对首次严重抑郁发作定制现有干预措施的计算策略,以告知和测试个性化干预措施
  • 批准号:
    10650695
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
Identifying structural variants influencing human health in population cohorts
识别影响人群健康的结构变异
  • 批准号:
    10889519
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了