Collaborative Research: Advanced Coding Techniques for Next-Generation Optical Communications
合作研究:下一代光通信的先进编码技术
基本信息
- 批准号:1611285
- 负责人:
- 金额:$ 20.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, there has been an explosion of data traffic over the internet. With the popularity of video streaming, cloud computing, and the rapid dissemination of user-generated content through social networks, there is no doubt that this trend will continue. In order to support these services, the data rates carried over optical transport networks which constitute the internet backbone has been constantly increasing and this trend is expected to continue. While 100 Giga bits per second optical transport networks are being deployed, even conservative estimates predict that data rates in next generation optical transport networks will increase to 400 Giga bits per second in 2016, 1 Tera bits per second in 2019 and 10 Tera bits per second in 2025. As the data rate increases, optical signal-to-noise ratio of the fiber-optic channel decreases substantially and the bit error-rate increases. This project considers the design and analysis of advanced error-correcting codes that mitigate transmission errors and provide reliable communication for internet traffic.The design and implementation of advanced channel coding techniques at extremely high data rates is very challenging due to hardware constraints. This is exacerbated by the fact that the desired code rates are high (e.g., greater than 0.8) and the target bit error rates are extremely low (e.g., on the order of 1e-15 or 10^{-15}). These constraints call for innovative ideas for the design of advanced channel coding techniques and cross-disciplinary interaction between researchers who focus on algorithm design and researchers who specialize in hardware implementation. The goal of this research effort is to design practical codes and decoders that provide large coding gains and can be implemented at speeds scaling to 10 Tera bits per second in the future. The transformative nature of the project lies in the fact that several novel classes of codes and computationally-efficient decoders will be designed and analyzed. Specifically, we will consider the following three topics - (i) the design and analysis of novel classes of spatially-coupled algebraic codes, symmetric product codes and spatially-coupled convolutional codes that have the potential to deliver large coding gains, (ii) the design and analysis of message-passing decoding algorithms for these codes that can achieve extremely high throughput with moderate hardware resources, and (iii) the design of codes and computationally-efficient soft-decision decoding algorithms that exploit the availability of soft information from the channel. Another important aspect of this project is the design methodology which leverages the close interaction between algorithm design and hardware implementation which will result in the implementation of codes and decoders on field programmable gate arrays. The broader impacts of this project will be maximized by the planned initiatives that aim to expand the scope of the telecommunications and signal processing and very large scale integration curricula at Texas A&M University and Duke University. It will also promote collaboration in the design, development and implementation of educational activities between Texas A&M University and Duke University.
近年来,互联网上的数据流量呈爆炸式增长。随着视频流、云计算的普及,以及用户生成内容通过社交网络的快速传播,毫无疑问,这种趋势将持续下去。为了支持这些服务,构成互联网主干的光传输网络承载的数据速率一直在不断提高,并且预计这一趋势将持续下去。尽管正在部署每秒 100 吉比特的光传输网络,但即使保守估计,下一代光传输网络的数据速率也将在 2016 年增至每秒 400 吉比特,2019 年将增至每秒 1 太比特,最后将增至每秒 10 太比特。到2025年,随着数据速率的提高,光纤通道的光信噪比大幅下降,误码率增加。 该项目考虑了先进纠错码的设计和分析,以减少传输错误并为互联网流量提供可靠的通信。由于硬件限制,在极高数据速率下设计和实现先进信道编码技术非常具有挑战性。由于所需的码率很高(例如,大于 0.8)并且目标误码率极低(例如,约为 1e-15 或 10^{-15}),这一事实加剧了这种情况。这些限制需要先进信道编码技术的设计创新思路,以及专注于算法设计的研究人员和专门从事硬件实现的研究人员之间的跨学科互动。这项研究工作的目标是设计实用的代码和解码器,以提供较大的编码增益,并在未来能够以每秒 10 太比特的速度实现。该项目的变革性本质在于将设计和分析几种新颖的代码类别和计算高效的解码器。 具体来说,我们将考虑以下三个主题 - (i) 有潜力提供大编码增益的新型空间耦合代数码、对称乘积码和空间耦合卷积码的设计和分析,(ii)设计和分析这些代码的消息传递解码算法,这些算法可以通过适度的硬件资源实现极高的吞吐量,以及(iii)利用来自信道的软信息的可用性的代码和计算高效的软决策解码算法的设计。该项目的另一个重要方面是设计方法,它利用算法设计和硬件实现之间的密切交互,从而在现场可编程门阵列上实现代码和解码器。该项目的更广泛影响将通过计划中的举措最大化,这些举措旨在扩大德克萨斯农工大学和杜克大学的电信和信号处理以及超大规模集成课程的范围。它还将促进德克萨斯农工大学和杜克大学之间在教育活动的设计、开发和实施方面的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishna Narayanan其他文献
Transformers are Provably Optimal In-context Estimators for Wireless Communications
Transformer 被证明是无线通信的最佳上下文估计器
- DOI:
- 发表时间:
2023-11-01 - 期刊:
- 影响因子:0
- 作者:
Vishnu Teja Kunde;Vicram Rajagopalan;Ch;ra Shekhara Kaushik Valmeekam;ra;Krishna Narayanan;S. Shakkottai;D. Kalathil;J. Chamberl - 通讯作者:
J. Chamberl
A Study on Checkpoint Compression for Adjoint Computation
伴随计算的检查点压缩研究
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kai;Sri Hari;Krishna Narayanan;Daniel Goldberg;Navjot Kukreja;Bogdan Nicolae;Paul Hovland - 通讯作者:
Paul Hovland
Multi-User SR-LDPC Codes via Coded Demixing with Applications to Cell-Free Systems
通过编码解混合进行多用户 SR-LDPC 编码及其在无单元系统中的应用
- DOI:
10.48550/arxiv.2402.06881 - 发表时间:
2024-02-10 - 期刊:
- 影响因子:0
- 作者:
Jamison R. Ebert;J. Chamberl;Krishna Narayanan - 通讯作者:
Krishna Narayanan
A Multi-Criteria Decision Maker for Grid-Connected Hybrid Renewable Energy Systems Selection Using Multi-Objective Particle Swarm Optimization
使用多目标粒子群优化的并网混合可再生能源系统选择的多标准决策器
- DOI:
10.3390/su11041188 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Konneh David;Howlader Harun;Shigenobu Ryuto;Senjyu Tomonobu;Chakraborty Shantanu;Krishna Narayanan - 通讯作者:
Krishna Narayanan
A Multi-Criteria Decision Maker for Grid-Connected Hybrid Renewable Energy Systems Selection Using Multi-Objective Particle Swarm Optimization
使用多目标粒子群优化的并网混合可再生能源系统选择的多标准决策器
- DOI:
10.3390/su11041188 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Konneh David;Howlader Harun;Shigenobu Ryuto;Senjyu Tomonobu;Chakraborty Shantanu;Krishna Narayanan - 通讯作者:
Krishna Narayanan
Krishna Narayanan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishna Narayanan', 18)}}的其他基金
RINGS: Resilient Wireless Systems for Future Uplink Traffic through Cell-Free, Loosely Coordinated Access
RINGS:通过无蜂窝、松散协调接入实现未来上行链路流量的弹性无线系统
- 批准号:
2148354 - 财政年份:2022
- 资助金额:
$ 20.02万 - 项目类别:
Continuing Grant
CIF: Small: Numerically-Stable Large-Scale Coded Distributed Computing
CIF:小型:数值稳定的大规模编码分布式计算
- 批准号:
2008714 - 财政年份:2020
- 资助金额:
$ 20.02万 - 项目类别:
Standard Grant
RAPID: Accelerated Testing for COVID-19 using Group Testing
RAPID:使用分组测试加速 COVID-19 测试
- 批准号:
2027997 - 财政年份:2020
- 资助金额:
$ 20.02万 - 项目类别:
Standard Grant
CIF: Student Conference Travel Support for the 2018 North American School of Information Theory
CIF:2018年北美信息论学院学生会议差旅支持
- 批准号:
1832952 - 财政年份:2018
- 资助金额:
$ 20.02万 - 项目类别:
Standard Grant
CIF: Student Conference Travel Support for the 2018 North American School of Information Theory
CIF:2018年北美信息论学院学生会议差旅支持
- 批准号:
1832952 - 财政年份:2018
- 资助金额:
$ 20.02万 - 项目类别:
Standard Grant
CIF: Small: Massive Uncoordinated and Sporadic Multiple Access -- Strengthening Connections between Coding and Random Access
CIF:小型:大规模不协调和零星多址——加强编码和随机接入之间的联系
- 批准号:
1619085 - 财政年份:2016
- 资助金额:
$ 20.02万 - 项目类别:
Standard Grant
EARS: Enhancing Radio-Frequency Spectrum Through Interference Resilient Cognitive Radio Systems: Design, Performance Analysis and Optimization
EARS:通过抗干扰认知无线电系统增强射频频谱:设计、性能分析和优化
- 批准号:
1547447 - 财政年份:2015
- 资助金额:
$ 20.02万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Interference-Aware Cooperation via Structured Codes: Creating an Empirical Cycle
CIF:媒介:协作研究:通过结构化代码进行干扰感知合作:创建经验循环
- 批准号:
1302616 - 财政年份:2013
- 资助金额:
$ 20.02万 - 项目类别:
Continuing Grant
CIF:Small: Design and Analysis of Spatially-Coupled Coding Systems
CIF:Small:空间耦合编码系统的设计与分析
- 批准号:
1320924 - 财政年份:2013
- 资助金额:
$ 20.02万 - 项目类别:
Standard Grant
GOALI : Collaborative Proposal: Advanced Coding and Signal Processing
目标:协作提案:高级编码和信号处理
- 批准号:
0802124 - 财政年份:2008
- 资助金额:
$ 20.02万 - 项目类别:
Standard Grant
相似国自然基金
先进运行模式中稳态远轴内部输运垒的调控机理研究
- 批准号:12375233
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
- 批准号:52336006
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
基于先进深度学习模型的面向临床多模态乳腺癌诊断方法研究
- 批准号:62371312
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
关联锂离子电池正极动力学-热力学与构效-失效机制的先进同步辐射研究
- 批准号:12375328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: GEO OSE Track 1: Advanced cloud-based Data- and Visualization-Integrated Simulation EnviRonment (ADVISER) to Advance Computational Glaciology
合作研究:GEO OSE Track 1:先进的基于云的数据和可视化集成模拟环境 (ADVISER),以推进计算冰川学
- 批准号:
2324736 - 财政年份:2023
- 资助金额:
$ 20.02万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Creating Windows Advanced Memory Corruption Attack and Defense Teaching Modules
协作研究:SaTC:EDU:创建 Windows 高级内存损坏攻击和防御教学模块
- 批准号:
2325452 - 财政年份:2023
- 资助金额:
$ 20.02万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:
2328803 - 财政年份:2023
- 资助金额:
$ 20.02万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:
2328805 - 财政年份:2023
- 资助金额:
$ 20.02万 - 项目类别:
Continuing Grant
Collaborative Research: Advanced Oxidation Processes for the Control of Iodinated Disinfection Byproducts in Drinking Water
合作研究:控制饮用水中碘消毒副产物的高级氧化工艺
- 批准号:
2308711 - 财政年份:2023
- 资助金额:
$ 20.02万 - 项目类别:
Standard Grant