High density capacitors: bridging the performance gap between conventional capacitors and electric double layer capacitors

高密度电容器:缩小传统电容器和双电层电容器之间的性能差距

基本信息

  • 批准号:
    1611060
  • 负责人:
  • 金额:
    $ 34.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

The low capacitance density of electrolytic capacitors is becoming a limiting factor on circuit board profile and circuit performance. The capacitance density of the current generation of electric double layer supercapacitors is several orders of magnitude higher, but they are limited to a charge-discharge rate of about 1 second, or a characteristic frequency of 1 hertz, and thus not suitable for those circuit applications requiring capacitors that must run in the hundreds of hertz to kilohertz range. In other words, there exists a significant performance gap, in terms of capacitance/frequency, between currently available supercapacitor and traditional circuit capacitor technologies. The proposed research addresses this performance gap through studies aimed at developing ultrafast supercapacitors with novel nanostructured electrodes and a high capacitance density that run in the hundreds of hertz to kilohertz range and are suitable for circuit applications. This research, if successful, will bring about disruptive change in capacitor design and ground-breaking applications in crucial circuit functions like decoupling, timing, filtering, and power supply and conditioning. The proposed nanostructured electrodes can additionally be utilized in battery and electrocatalyst applications. Education and outreach activities are integrated in this project for the training of undergraduate and graduate students. In addition to supported Research Experiences for Undergraduates program students, several undergraduate students will be involved in the project through their Project Lab course work, to inspire their interest in advanced studies. Attention will be paid to recruiting female and minority students, particularly first-generation college students, to secure diversity and broad participation. An outreach component on nanomaterials for energy technologies will be developed to educate students who will serve as ambassadors in subsequent outreach efforts coordinated by the T-STEM Center of Texas Tech University.The proposed research will characterize and demonstrate high-density capacitors running in the hundreds of hertz to kilohertz frequency range. This represents a disruptive advance in capacitor technology for compact and efficient ultrafast electric double layer capacitors as discrete components, for line-frequency alternating current filtering, and on-chip integrated high-density micro-capacitor needs. The proposed electrode is based on perpendicularly edge-oriented multilayer graphene grown on a cellulose nanofiber scaffold. This novel material has a shallow, straight forward, wide-open pore structure that ensures high frequency response while its large specific surface area and especially high density of fully exposed graphene edges offer the possibility of large capacitance. Edge-oriented multilayer graphene growth and cellulose fiber carbonization into carbon nanofiber are implemented in a process that requires only a few minutes' time. The ultrafast electric double layer capacitors based on this new material could allow at least two orders of volume reduction compared to low-voltage aluminum electrolytic capacitors for filtering. The resulting freestanding electrodes can also be transferred to a substrate or an integrated circuit chip for in-package or on-chip capacitor integration. This project comprises comprehensive nanomaterial and charge storage studies, device modeling, fabrication and performance testing. If successful, it will ultimately bridge the frequency/capacitance gap between existing circuit capacitors and supercapacitors. The outcomes of this study will in addition enhance understanding in the areas of related materials and devices.
电解电容器的低电容密度正在成为电路板外形和电路性能的限制因素。当前一代双电层超级电容器的电容密度高出几个数量级,但它们的充放电速率仅限于1秒左右,或特征频率为1赫兹,因此不适合这些电路应用要求电容器必须在数百赫兹到千赫兹范围内运行。换句话说,当前可用的超级电容器与传统电路电容器技术之间在电容/频率方面存在显着的性能差距。拟议的研究通过旨在开发具有新型纳米结构电极和高电容密度的超快超级电容器来解决这一性能差距,该超级电容器运行在数百赫兹到千赫兹范围内,适合电路应用。这项研究如果成功,将给电容器设计带来颠覆性变化,并在去耦、定时、滤波、电源和调节等关键电路功能中带来突破性应用。所提出的纳米结构电极还可用于电池和电催化剂应用。该项目整合了教育和外展活动,以培训本科生和研究生。除了支持本科生项目学生的研究经验外,一些本科生还将通过项目实验室课程参与该项目,以激发他们对高级研究的兴趣。将注重招收女性和少数民族学生,特别是第一代大学生,以确保多样性和广泛参与。将开发能源技术纳米材料的推广部分,以教育学生,这些学生将在德克萨斯理工大学 T-STEM 中心协调的后续推广工作中担任大使。拟议的研究将描述和演示在数百个运行的高密度电容器赫兹到千赫兹的频率范围。这代表了电容器技术的颠覆性进步,可满足作为分立元件的紧凑高效超快双电层电容器、工频交流电滤波以及片上集成高密度微电容器的需求。所提出的电极基于在纤维素纳米纤维支架上生长的垂直边缘取向的多层石墨烯。这种新型材料具有浅、直、大开的孔隙结构,可确保高频响应,同时其大的比表面积和特别是高密度的完全暴露的石墨烯边缘提供了大电容的可能性。边缘定向多层石墨烯生长和纤维素纤维碳化成碳纳米纤维的过程仅需要几分钟的时间。与用于滤波的低压铝电解电容器相比,基于这种新材料的超快双电层电容器可以使体积至少减小两个数量级。所得的独立电极还可以转移到基板或集成电路芯片上,用于封装内或片上电容器集成。该项目包括全面的纳米材料和电荷存储研究、器件建模、制造和性能测试。如果成功,它将最终弥合现有电路电容器和超级电容器之间的频率/电容差距。这项研究的结果还将增强对相关材料和设备领域的理解。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-frequency electrochemical capacitors based on plasma pyrolyzed bacterial cellulose aerogel for current ripple filtering and pulse energy storage
基于等离子体热解细菌纤维素气凝胶的高频电化学电容器,用于电流纹波过滤和脉冲储能
  • DOI:
    10.1016/j.nanoen.2017.08.015
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Nazifah Islam;L. Shiqi;Guofeng Ren;Yujiao Zu;J. Warzywoda;Shu Wang;Zhaoyang Fan
  • 通讯作者:
    Zhaoyang Fan
AC-Filtering Supercapacitors Based on Edge Oriented Vertical Graphene and Cross-Linked Carbon Nanofiber
基于边缘定向垂直石墨烯和交联碳纳米纤维的交流滤波超级电容器
  • DOI:
    10.3390/ma12040604
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Wenyue Li;Nazifah Islam;Guofeng Ren;Shiqi Li;Zhaoyang Fan
  • 通讯作者:
    Zhaoyang Fan
Carbon Nanofiber Aerogel Converted from Bacterial Cellulose for Kilohertz AC-Supercapacitors
由细菌纤维素转化而来的碳纳米纤维气凝胶用于千赫兹交流超级电容器
  • DOI:
    10.1557/adv.2018.139
  • 发表时间:
    2018-03-01
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Nazifah Islam;Md Nadim Ferdous Hoque;Yujiao Zu;Shu Wang;Zhaoyang Fan
  • 通讯作者:
    Zhaoyang Fan
ZIF-67-derived edge-oriented graphene clusters coupled with carbon nanotubes containing encapsulated Co nanoparticles for high-frequency electrochemical capacitors
ZIF-67 衍生的边缘取向石墨烯簇与含有封装 Co 纳米粒子的碳纳米管耦合,用于高频电化学电容器
  • DOI:
    10.1039/c9se00503j
  • 发表时间:
    2019-10-23
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Wenyue Li;Nazifah Islam;S. Azam;Zhen Xu;J. Warzywoda;Zhaoyang Fan
  • 通讯作者:
    Zhaoyang Fan
Fast supercapacitors based on vertically oriented MoS2 nanosheets on plasma pyrolyzed cellulose filter paper
基于等离子体热解纤维素滤纸上垂直取向MoS2纳米片的快速超级电容器
  • DOI:
    10.1016/j.jpowsour.2018.08.049
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Nazifah Islam;Shu Wang;J. Warzywoda;Zhaoyang Fan
  • 通讯作者:
    Zhaoyang Fan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhaoyang Fan其他文献

Optical, Structural, and Electrical Properties of Vanadium Dioxide Grown on Sapphire Substrates with Different Crystallographic Orientations
在不同晶体取向的蓝宝石衬底上生长的二氧化钒的光学、结构和电学性质
  • DOI:
    10.1557/opl.2012.1582
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Nazari;Yong Zhao;Yanhan Zhu;V. Kuryatkov;A. Bernussi;Zhaoyang Fan;M. Holtz
  • 通讯作者:
    M. Holtz
Role of phonons in the optical properties of magnetron sputtered ZnO studied by resonance Raman and photoluminescence
通过共振拉曼和光致发光研究声子在磁控溅射 ZnO 光学性质中的作用
  • DOI:
    10.1063/1.3475649
  • 发表时间:
    2010-09-03
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    S. Sohal;Y. Alivov;Zhaoyang Fan;M. Holtz
  • 通讯作者:
    M. Holtz
Delta-doped AlGaN/GaN Heterostructure Field-Effect Transistors with Incorporation of AlN Epilayers
结合 AlN 外延层的 Delta 掺杂 AlGaN/GaN 异质结构场效应晶体管
  • DOI:
    10.1557/proc-798-y10.23
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaoyang Fan;M. Nakarmi;J. Lin;Hongxing Jiang
  • 通讯作者:
    Hongxing Jiang
In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution
原位合成C掺杂TiO2@g-C3N4核壳空心纳米球,增强可见光光催化析氢活性
  • DOI:
    10.1016/j.cej.2017.04.056
  • 发表时间:
    2017-08-15
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Yajun Zou;Jian;D;an Ma;an;Zhaoyang Fan;Lu Lu;C. Niu
  • 通讯作者:
    C. Niu
Voltage Pulse Driven VO2 Volatile Resistive Transition Devices as Leaky Integrate-and-Fire Artificial Neurons
电压脉冲驱动 VO2 易失性电阻转换器件作为泄漏集成和激发人工神经元
  • DOI:
    10.3390/electronics11040516
  • 发表时间:
    2022-02-09
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zhen Xu;A. Bernussi;Zhaoyang Fan
  • 通讯作者:
    Zhaoyang Fan

Zhaoyang Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhaoyang Fan', 18)}}的其他基金

Collaborative Research: Promoting Lithium Sulfides Redox Cycle via Atomically Dispersed Active Sites for Batteries
合作研究:通过电池的原子分散活性位点促进硫化锂氧化还原循环
  • 批准号:
    2129983
  • 财政年份:
    2021
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: Promoting Lithium Sulfides Redox Cycle via Atomically Dispersed Active Sites for Batteries
合作研究:通过电池的原子分散活性位点促进硫化锂氧化还原循环
  • 批准号:
    2129983
  • 财政年份:
    2021
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Continuing Grant
PFI-TT: Ultrafast Electrochemical Capacitors for Electronic and Energy Applications
PFI-TT:用于电子和能源应用的超快电化学电容器
  • 批准号:
    2122921
  • 财政年份:
    2021
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant
Manufacturing of High-Performance Lithium-Sulfur Batteries Using Microbial Nanomachines
利用微生物纳米机器制造高性能锂硫电池
  • 批准号:
    2103582
  • 财政年份:
    2020
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant
Manufacturing of High-Performance Lithium-Sulfur Batteries Using Microbial Nanomachines
利用微生物纳米机器制造高性能锂硫电池
  • 批准号:
    2103582
  • 财政年份:
    2020
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant
Manufacturing of High-Performance Lithium-Sulfur Batteries Using Microbial Nanomachines
利用微生物纳米机器制造高性能锂硫电池
  • 批准号:
    1931737
  • 财政年份:
    2019
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant
I-Corps: Supercapacitors for Energy Applications
I-Corps:能源应用超级电容器
  • 批准号:
    1756904
  • 财政年份:
    2017
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant
Organometal Halide Perovskites: Sequential Vapor Deposition And Device Study Toward Highly Efficient Thin-Film Solar Cells
有机金属卤化物钙钛矿:高效薄膜太阳能电池的连续气相沉积和器件研究
  • 批准号:
    1438681
  • 财政年份:
    2014
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant
Electrically Controlled Metal-Insulator Transition and Its Terahertz Applications
电控金属-绝缘体转变及其太赫兹应用
  • 批准号:
    1128644
  • 财政年份:
    2011
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant
SBIR Phase II: Microdisplays Based on III-Nitride Wide Band Gap Semiconductors
SBIR 第二阶段:基于 III 族氮化物宽带隙半导体的微型显示器
  • 批准号:
    0450314
  • 财政年份:
    2005
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant

相似国自然基金

三维石墨烯材料设计及其水系锌离子混合电容器应用研究
  • 批准号:
    52372048
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
X9R高温多层陶瓷电容器(MLCC)中关键科学与技术难题研究
  • 批准号:
    52302276
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
  • 批准号:
    22309176
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
基于自支撑MOFs复合电极的高比能和高功率型非对称超级电容器研究
  • 批准号:
    22379113
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于层间自键合策略构筑全器件自愈的一体化可拉伸超级电容器及其性能研究
  • 批准号:
    22365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

ERI: Molecular-level Characterization of Water-in-Salt Electric Double-Layer Capacitors: Nanoscale Thermal Effects on Differential Capacitance
ERI:盐包水双电层电容器的分子级表征:微分电容的纳米级热效应
  • 批准号:
    2347562
  • 财政年份:
    2024
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant
Insertion electrodes and nanostructured composites for lithium and sodium-ion asymmetric (hybrid) capacitors
用于锂和钠离子不对称(混合)电容器的插入电极和纳米结构复合材料
  • 批准号:
    547188-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
High-Power DC Controlled Variable Capacitors for MR Engineering
用于 MR 工程的高功率直流控制可变电容器
  • 批准号:
    10595070
  • 财政年份:
    2022
  • 资助金额:
    $ 34.96万
  • 项目类别:
A systems materials engineering strategy for hybrid ion capacitors
混合离子电容器的系统材料工程策略
  • 批准号:
    DP220103498
  • 财政年份:
    2022
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Discovery Projects
High-Power DC Controlled Variable Capacitors for MR Engineering
用于 MR 工程的高功率直流控制可变电容器
  • 批准号:
    10432548
  • 财政年份:
    2022
  • 资助金额:
    $ 34.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了